
DS-GA 3001 005 | Lecture 5
Reinforcement Learning

Jeremy Curuksu, PhD
NYU Center for Data Science
jeremy.cur@nyu.edu

March 6, 2024



DS-GA 3001 RL Curriculum

Reinforcement Learning:
▶ Introduction to Reinforcement Learning
▶ Multi-armed Bandit
▶ Dynamic Programming on Markov Decision Process
▶ Model-free Reinforcement Learning
▶ Value Function Approximation (Deep RL)
▶ Policy Function Approximation (Actor-Critic)
▶ Planning from a Model of the Environment
▶ Examples of Industrial Applications
▶ Advanced Topics and Development Platforms

DS-GA 3001 005 | Lecture 5



Reinforcement Learning

Last week: Model Free RL
▶ Monte Carlo and Temporal Difference
▶ Sample based Prediction and Control
▶ Off policy Learning

Today: Value Function Approximation
▶ Categories of Functions
▶ Approximation of State Update and Value Functions
▶ Deep Reinforcement Learning

DS-GA 3001 005 | Lecture 5



Categories of Functions in
Reinforcement Learning

DS-GA 3001 005 | Lecture 5



RL Functions and Approximations

▶ All key components of an RL agent are functions
▶ State update functions map observations to states
▶ Value functions map states to values
▶ Policies map states to actions
▶ Models map states and actions to next states and rewards

▶ Functions can be parameterized and approximated by linear or
non-linear gradient methods e.g., Deep Learning

▶ If approximated, this is called RL with function approximation

▶ Challenge: Supervised learning assumptions are often violated

▶ Deep reinforcement learning has recently led to breakthoughs
in AI and is an active field of research

DS-GA 3001 005 | Lecture 5



Why Approximate?
Tabular methods do not scale to large state spaces
▶ So far we defined value functions as lookup tables, where

every state s has an entry v(s), or set of q(s,a)

▶ Many RL problems contain a very large number of states:
▶ Chess: 10120 states
▶ Go: 10170 states
▶ Helicopter: Continuous state space
▶ Robot: Infinite state space (physical universe)

▶ Problem with large MDPs:
▶ There are too many states/actions to store in memory
▶ Learning the value of each state individually is too slow
▶ Individual states are often not fully observable
▶ Exact nature of a state may never happen again

DS-GA 3001 005 | Lecture 5



Types of Function Approximation

Any function approximator can be used:
▶ Tabular function (look-up tables)
▶ State aggregation (feature engineering)
▶ Linear function (regression, nearest-neighbors, etc)
▶ Non-linear function (neural network, decision tree, etc)

But RL has specific properties:
▶ Experience is not i.i.d. — successive time-steps are correlated
▶ Agent’s policy affects the data it observes
▶ Reward and values may continuously evolve (non-stationary)
▶ Feedback is delayed, not instantaneous

DS-GA 3001 005 | Lecture 5



Approximation of State
Update Functions

DS-GA 3001 005 | Lecture 5



Generalization through state space

Function to update state and engineer state features

st+1 = ϕ(st,ot+1)

▶ Represent state by a feature vector. For example:
▶ GPS location and sonar readings (distance to objects) of a robot
▶ Recent trends in the stock market
▶ Global configuration of the board in Chess

▶ If the environment state is not fully observable, there is at
least an implicit mapping ot 7→ st

DS-GA 3001 005 | Lecture 5



Generalization through state space

Function to update state and engineer state features

st+1 = ϕ(st,ot+1)

▶ Represent state by a feature vector. For example:
▶ GPS location and sonar readings (distance to objects) of a robot
▶ Recent trends in the stock market
▶ Global configuration of the board in Chess

▶ If the environment state is not fully observable, there is at
least an implicit mapping ot 7→ st

DS-GA 3001 005 | Lecture 5



Example of State Feature Engineering

Aggregate multiple states by coarse coding:

▶ Generalise from seen states to unseen states

▶ Resulting features not Markovian ⇒ Partially Observable MDP

DS-GA 3001 005 | Lecture 5



Approximation of Value
Prediction Functions

DS-GA 3001 005 | Lecture 5



Linear Value Function Approximation

Approximate Values using a Parametric Function

vw(s) ≈ vπ(s)

▶ vw(s) can be a linear combination of state features:

vw(s) = wT ϕ(s) =
n∑
i=1

wi ϕi(s)

▶ Parameters wi can be updated incrementally by optimizing an
objective measure of performance:

w ∼ argmin
w

E
π
[(vπ(s)− vw(s))2]

▶ Gradient descent can converge to global optimum if vπ known

DS-GA 3001 005 | Lecture 5



Linear Value Function Approximation

The special case of tabular value function

▶ Define vw(s) as a linear combination of state features:

vw(s) = wT ϕ(s) =
n∑
i=1

wi ϕi(s) =


w1
...
wn


T 

ϕ1(s)
...

ϕn(s)


where n is the number of features

▶ Tabular value function (lookup table) is the special case where
n = number of states and where wi is the value of each state si:

vw(s) =


w1
...
wn


T 

1(s = s1)
...

1(s = sn)


DS-GA 3001 005 | Lecture 5



Non-linear Value Function Approximation

Approximate Values using a Deep Neural Network

▶ Deep RL: Replace the look-up table by an ANN

DS-GA 3001 005 | Lecture 5



Function Optimization by Gradient Descent

Approximate Values by Stochastic Gradient Descent

▶ Goal: Find w that minimizes difference between vw(s) and vπ(s):

J(w) = E
π
[(vπ(s)− vw(s))2]

▶ To find a minimum of J(w), define its gradient ∇w J(w) and
move wi in the direction of negative gradient at every step:

∇w J(w) =


∂J(w)
∂w1
...

∂J(w)
∂wn


wt+1 = wt −

1
2α∇w (vπ(st)− vw(st))2

wt+1 = wt − α (vπ(st)− vw(st))∇wvw(st)
DS-GA 3001 005 | Lecture 5



Incremental Prediction RL Algorithms

Replace the true value of vπ(s) by sampled target

▶ In practice we do not know the true value vπ(s), we replace it
by a target sampled using Monte-Carlo or Temporal Difference:

▶ MC value function approximation target is the return Gt

wt+1 = wt − α (Gt − vw(st))∇wvw(st)

▶ TD value function approximation target is rt+1 + γ vw(st+1)

wt+1 = wt − α (rt+1 + γ vw(st+1)− vw(st))∇wvw(st)

DS-GA 3001 005 | Lecture 5



Monte-Carlo Value Function Approximation

Monte-Carlo Policy Evaluation

▶ The return Gt is an unbiased, noisy sample of vπ(s)

▶ Apply supervised learning to sampled data {(s0,G0), ..., (st,Gt)}

wt+1 = wt − α (Gt − vw(st))∇wvw(st)

▶ Monte-Carlo evaluation converges to a local optimum at least
(proof out of scope)

▶ With a linear function approximator, it simplifies to:

wt+1 = wt − α (Gt − vw(st))ϕ(st)

DS-GA 3001 005 | Lecture 5



TD(0) Value Function Approximation

Temporal Difference Policy Evaluation

▶ The TD target rt+1 + γ vw(st+1) is a biased sample of vπ(s)

▶ Supervised learning can still be applied to sampled data which
takes the form {(s0, r1 + γvw(s1)), ..., (st, rt+1 + γvw(st+1))}

wt+1 = wt − α (rt+1 + γ vw(st+1)− vw(st))∇wvw(st)

▶ Temporal Difference evaluation converges to a local optimum
which may not be the same as the asymptotic MC solution

▶ MC asymptotic solution unbiased, but TD may converge faster

DS-GA 3001 005 | Lecture 5



Human-Level Control
with Deep Reinforcement

Learning

DS-GA 3001 005 | Lecture 5



Control with Value Function Approximation

Approximate action values using a parametric function

qw(s,a) ≈ qπ(s,a)

▶ Find w that minimizes difference between qw(s,a) and qπ(s,a)
or q∗(s,a) by stochastic gradient descent:

wt+1 = wt − α (q∗(st,at)− qw(st,at))∇wqw(st,at)

▶ Example: Sample q∗(s,a) as TD target rt+1 + γmax
a′
qw(st+1,a′)

and apply supervised learning while acting on ϵ-greedy policy:

wt+1 = wt − α

(
rt+1 + γmax

a′
qw(st+1,a′)− qw(st,at)

)
∇wqw(st,at)

If qw(s,a) is a neural network, this is called Neural Q-Learning

DS-GA 3001 005 | Lecture 5



Control with Neural Q-Learning

Approximate action-values using a Deep Neural Network

▶ Deep RL: Replace look-up table by an ANN

DS-GA 3001 005 | Lecture 5



Practice: Semi-Gradient TD Control

Semi-Gradient TD Control predicts q(s,a) using the same parametric
function at every step with no model of the environment

Initialize w, π(s) and s arbitrarily

Loop forever:

Select and take a from s following π(s), observe rt+1 and s′

w = w − α

(
rt+1 + γmax

a′
qw(s′, a′)− qw(s, a)

)
∇wqw(s, a)

Update π at s given qw(s, a) by ϵ-greedy soft update

s = s′

DS-GA 3001 005 | Lecture 5



Convergence of Semi-Gradient TD Control

Semi-Gradient TD Control combines bootstrapping,
off-policy learning, and value approximation

▶ Training data used to parameterize the predictive function is
gathered online and thus often non-stationary/not i.i.d.

▶ The environment itself may continuously evolve, or be too big
for exhaustive sampling, and thus may never reach equilibrium

▶ Tracking is often preferred to convergence: continually adapt
the policy instead of trying to converge to a fixed policy

▶ Theory of control with function approximation still unclear

DS-GA 3001 005 | Lecture 5



Challenges with Semi-Gradient TD Control

Deadly triad: Convergence not guaranteed if we combine
these 3 methods together, even with infinite sampling

DS-GA 3001 005 | Lecture 5



Improving Quality of RL approximations

Reduce correlation between predicted vs. target values
to ”makes the training data more i.i.d.”

▶ Experience Replay: Keep set of past experiences in memory,
find best fitting value function in randomized training batches

▶ Add a Target Network: Use two separate parametric functions,
one updated at every step, and one updated periodically which
predicts the TD target (frozen within each temporal period)

▶ Emphatic TD method: Weight down states observed only in the
behavior policy and weight up states observed in target policy
(beyond scope)

DS-GA 3001 005 | Lecture 5



Practice: Deep Q-Network (DQN)

DQN predicts q(s,a) with two Neural Networks to learn at every step
from stable buffers of experiences, with no model of environment

Initialize w, wtarget, π(s) and s arbitrarily

Loop forever:

Select and take a from s following π(s), observe rt+1 and s′

w = w − α

(
rt+1 + γmax

a′
qtarget
w (s′, a′)− qw(s, a)

)
∇wqw(s, a)

Update π at s given qw(s, a) by ϵ-greedy soft update

Store transition (st, at, rt+1, st+1) in a Replay Buffer

s = s′

Periodically:

Sample mini-batches from the Replay Buffer

Loop through these mini-batches to further update w

Update wtarget ← w

DS-GA 3001 005 | Lecture 5



Deep RL Research

Novelty of DQN (Mnih et al., Nature 2015)
1. Convolutional Neural Network creating states from raw pixels

2. Experience Replay buffer storing set of past experiences ei =
(si,ai, ri+1, si+1) from which minibatches are randomly sampled

3. Target network updated periodically (frozen between updates)

DS-GA 3001 005 | Lecture 5



Deep RL Research

Perceptually similar states are mapped to nearby points
in the high-dimentional CNN embedding space

▶ 2D t-SNE representations in last CNN layer assigned to Space Invaders states

Mnih et al., Nature 2015DS-GA 3001 005 | Lecture 5



Deep RL Research

DQN can train a large ANN with stochastic gradient
descent in a stable manner to identify winning actions

▶ Temporal evolution of average score-per-episode and predicted Q-values

Mnih et al., Nature 2015

DS-GA 3001 005 | Lecture 5



Deep RL Research

Disabling DQN’s replay memory and/or separate target
Q-network has a detrimental effect on performance

▶ Effects of Experience Replay and Separate Target Q-Network on performance

Mnih et al., Nature 2015

DS-GA 3001 005 | Lecture 5



Deep RL Research

DQN outperforms all linear methods and achieve level
comparable to that of professional human players

▶ Comparison of DQN performance vs. best RL from 2015 on 49 Atari video games

Mnih et al., 2015

DS-GA 3001 005 | Lecture 5



Deep RL Research

DDQN outperforms DQN by reducing the overoptimism
due to value estimation errors

▶ Comparison of DDQN performance vs. DQN on 57 Atari video games

van Hasselt, Silver, 2015DS-GA 3001 005 | Lecture 5



Deep RL Research

Deep RL is a fertile research area

▶ Performance has improved dramatically in past few years:
▶ Deep Q-Network (2014)
▶ Deepmind AlphaGo (2016)
▶ Deepmind AlphaZero (2018)
▶ OpenAI ChatGPT (2022)

▶ Some key open questions: (lectures 6-9)
▶ How best to build objective measures to optimize function parameters?
▶ Can we directly parameterize and optimize a policy function?

Would such direct policy optimization benefit from also learning values?
▶ Can we learn a model of the environment? How best to use a model?
▶ How best to build the agent state? (including what it stores in memory)
▶ How best to improve data sampling efficiency?

DS-GA 3001 005 | Lecture 5



DQN learns to play Atari

Deep Q-network training on video game Seaquest

(Source: Sprague N., 2015)

DS-GA 3001 005 | Lecture 5

https://youtu.be/5WXVJ1A0k6Q


Thank you!

DS-GA 3001 005 | Lecture 5


