DS-GA 3001 005 | Lecture 5

Reinforcement Learning

Jeremy Curuksu, PhD
NYU Center for Data Science
jeremy.cur@nyu.edu

March 6, 2024



DS-GA 3001 RL Curriculum

Reinforcement Learning:

| 2

vV VvV V.V vV vV VY

Introduction to Reinforcement Learning
Multi-armed Bandit

Dynamic Programming on Markov Decision Process
Model-free Reinforcement Learning

Value Function Approximation (Deep RL)

Policy Function Approximation (Actor-Critic)
Planning from a Model of the Environment
Examples of Industrial Applications

Advanced Topics and Development Platforms

DS-GA 3001005 | Lecture 5



Reinforcement Learning

Last week: Model Free RL

» Monte Carlo and Temporal Difference
» Sample based Prediction and Control
» Off policy Learning

Today: Value Function Approximation

» Categories of Functions
» Approximation of State Update and Value Functions
» Deep Reinforcement Learning

DS-GA 3001005 | Lecture 5



Categories of Functions in
Reinforcement Learning



RL Functions and Approximations

» All key components of an RL agent are functions

> State update functions map observations to states

> Value functions map states to values

> Policies map states to actions

> Models map states and actions to next states and rewards

» Functions can be parameterized and approximated by linear or
non-linear gradient methods e.g., Deep Learning

» If approximated, this is called RL with function approximation
» Challenge: Supervised learning assumptions are often violated

» Deep reinforcement learning has recently led to breakthoughs
in Al and is an active field of research

DS-GA 3001005 | Lecture 5



Why Approximate?

Tabular methods do not scale to large state spaces

» So far we defined value functions as lookup tables, where
every state s has an entry v(s), or set of q(s, a)

» Many RL problems contain a very large number of states:
» Chess: 10™° states
> Go: 10"° states
> Helicopter: Continuous state space
> Robot: Infinite state space (physical universe)

» Problem with large MDPs:

> There are too many states/actions to store in memory
> Learning the value of each state individually is too slow
> Individual states are often not fully observable

> Exact nature of a state may never happen again
DS-GA 3001 005 | Lecture 5



Types of Function Approximation

Any function approximator can be used:

» Tabular function (look-up tables)

> State aggregation (feature engineering)

» Linear function (regression, nearest-neighbors, etc)

» Non-linear function (neural network, decision tree, etc)

But RL has specific properties:

> Experience is not i.i.d. — successive time-steps are correlated
» Agent’s policy affects the data it observes

» Reward and values may continuously evolve (non-stationary)
» Feedback is delayed, not instantaneous

DS-GA 3001005 | Lecture 5



Approximation of State
Update Functions



Generalization through state space

Function to update state and engineer state features

St+1 = P(St, Ot41)

> Represent state by a feature vector. For example:

> GPS location and sonar readings (distance to objects) of a robot
> Recent trends in the stock market
> Global configuration of the board in Chess

» If the environment state is not fully observable, there is at
least an implicit mapping o; — s¢

DS-GA 3001 005 | Lecture 5



Generalization through state space

Function to update state and engineer state features

St+1 = P(St, Ot41)

» Represent state by a feature vector. For example:

> GPS location and sonar readings (distance to objects) of a robot
> Recent trends in the stock market
> Global configuration of the board in Chess

» If the environment state is not fully observable, there is at
least an implicit mapping o; — s¢

C1: feature maps C3: 1. maps ‘6@‘0“504 f sa!
; : 16@515
neur 6@28x28 .

DS-GA 3001005 | Lecture 5



Example of State Feature Engineering

Aggregate multiple states by coarse coding:

» Generalise from seen states to unseen states

> Resulting features not Markovian = Partially Observable MDP

DS-GA 3001005 | Lecture 5



Approximation of Value
Prediction Functions



Linear Value Function Approximation

Approximate Values using a Parametric Function
Vw(S) = v (S)

> v, (s) can be a linear combination of state features:
n
Vu(s) = W g(s) = Y w;¢i(s)
i=1

» Parameters w; can be updated incrementally by optimizing an
objective measure of performance:

W~ arg min E[(vx(s) — vi(s))’]

» Gradient descent can converge to global optimum if v, known

DS-GA 3001005 | Lecture 5



Linear Value Function Approximation

The special case of tabular value function

» Define v, (s) as a linear combination of state features:
T

n Wn P1(S)
V(s) = w'¢(s) = Z Wi gi(s) = | :

where n is the number of features

» Tabular value function (lookup table) is the special case where
n = number of states and where w; is the value of each state s;:

T
W-| 1(5251)

Wn 1(5 :Sn)

DS-GA 3001005 | Lecture 5



Non-linear Value Function Approximation

Approximate Values using a Deep Neural Network

» Deep RL: Replace the look-up table by an ANN
- o s g -~
ER- . - -~
Artificial
it
En- . - g -~
v(s) = Lookup-table(s) v,,(s) = ANN,,(s)

DS-GA 3001005 | Lecture 5



Function Optimization by Gradient Descent

Approximate Values by Stochastic Gradient Descent

» Goal: Find w that minimizes difference between v, (s) and v, (s):

J(w) = E[(vx(s) — vi(s))’]

s

» To find a minimum of J(w), define its gradient V,, J(w) and
move w; in the direction of negative gradient at every step:

oJ(w)
oW,

Vi J(w) = :
9J(w)

oWy
1
Wi = Wt — Eavw (Vi (St) — Vi(St))’

Wiiq = Wt — a (Ve (St) — Vi(St)) ViV (St)

DS-GA 3001005 | Lecture 5



Incremental Prediction RL Algorithms

Replace the true value of v, (s) by sampled target

» In practice we do not know the true value v, (s), we replace it
by a target sampled using Monte-Carlo or Temporal Difference:

» MC value function approximation target is the return G;
Wiy = Wt — (Gt = VW(St)) VWVW(St)
» TD value function approximation target is ri., + v Vi (St++1)

Weiq = Wi — a (Fepr + 9 Vi(St1) — Vw(St)) VwVu(St)

DS-GA 3001005 | Lecture 5



Monte-Carlo Value Function Approximation

Monte-Carlo Policy Evaluation
» The return G; is an unbiased, noisy sample of v, (s)
» Apply supervised learning to sampled data {(so, Go), ---, (St, Gt) }
Wiq = Wt — (G — Vi (St)) ViV (St)

» Monte-Carlo evaluation converges to a local optimum at least
(proof out of scope)

» With a linear function approximator, it simplifies to:

Wirq = We — (Gt — Vi (St)) o(St)

DS-GA 3001005 | Lecture 5



TD(0) Value Function Approximation

Temporal Difference Policy Evaluation
» The TD target re 4 + vV (Serq) is a biased sample of v, (s)

» Supervised learning can still be applied to sampled data which
takes the form {(so, 1 + YVw(51)), .-, (St, 41 + YW (St41)) }

Wip1 = Wi — o (Mg + 7 VY (St1) — Vw(St)) VY (St)

» Temporal Difference evaluation converges to a local optimum
which may not be the same as the asymptotic MC solution

» MC asymptotic solution unbiased, but TD may converge faster

DS-GA 3001005 | Lecture 5



Human-Level Control
with Deep Reinforcement
Learning



Control with Value Function Approximation

Approximate action values using a parametric function

qu(s,a) = q(s,a)

» Find w that minimizes difference between g (s, a) and g.(s,a)
or g.(s, a) by stochastic gradient descent:

Weyq = Wt — @ (q«(St, Q) — qu(St, at)) Vwqu(St, at)
» Example: Sample g.(s, a) as TD target ri 1 + ymaxqu(St+1,a’)
a/
and apply supervised learning while acting on e-greedy policy:

Wipq = Wt — « <"t+1 + ’Yma%XQW(St+1, a’) — qu(st, at)) Vwqu(St, ar)

If qu(s, a) is a neural network, this is called Neural Q-Learning

DS-GA 3001005 | Lecture 5



Control with Neural Q-Learning

Approximate action-values using a Deep Neural Network

» Deep RL: Replace look-up table by an ANN

Q-table
entry (s,a;)

q(s,a;)

Artificial
m—? Neural
Network
Q-table
entry (s, as)

q(s,a4)

Q-table
entry (s,as)

e — I
entry (s,a;) q(s,az)

qw(s, @) = ANN,,(s)

Action a,

q(s, a) = Q-table(s, a)

DS-GA 3001 005 | Lecture 5



Practice: Semi-Gradient TD Control

Semi-Gradient TD Control predicts q(s, a) using the same parametric
function at every step with no model of the environment

Initialize w, w(s) and s arbitrarily

Loop forever:
Select and take a from s following = (s), observe ri;4 and s’
W=Ww-—a«a (rt+1 +7 max qu(s’,a’) — qu(s, a)) Vwqu(s, a)

Update = at s given qu(s, a) by e-greedy soft update

s=5s'

DS-GA 3001005 | Lecture 5



Convergence of Semi-Gradient TD Control

Semi-Gradient TD Control combines bootstrapping,
off-policy learning, and value approximation

» Training data used to parameterize the predictive function is
gathered online and thus often non-stationary/not i.i.d.

» The environment itself may continuously evolve, or be too big
for exhaustive sampling, and thus may never reach equilibrium

» Tracking is often preferred to convergence: continually adapt
the policy instead of trying to converge to a fixed policy

» Theory of control with function approximation still unclear

DS-GA 3001005 | Lecture 5



Challenges with Semi-Gradient TD Control

Deadly triad: Convergence not guaranteed if we combine
these 3 methods together, even with infinite sampling

Bootstrapping

Learn from estimates in neighbor states
Pros: Faster learning and data efficient
Cons: Bias in estimate of target return

[ ]
Function Approximation Off-Policy
Learn from function generalizing across state space Learn about target policy by following behavior policy
Pros: Scale to large problems Pros: Learn target behavior from alter streams of experiences
Cons: Converges iff sampling unbiased estimate of G, Cons: Bias due to mismatch between expected vs. sampled
or stationary distribution of states under target policy distribution of states

DS-GA 3001005 | Lecture 5



Improving Quality of RL approximations

Reduce correlation between predicted vs. target values
to "makes the training data more i.i.d.”

>

Experience Replay: Keep set of past experiences in memory,
find best fitting value function in randomized training batches

Add a Target Network: Use two separate parametric functions,
one updated at every step, and one updated periodically which
predicts the TD target (frozen within each temporal period)

Emphatic TD method: Weight down states observed only in the
behavior policy and weight up states observed in target policy
(beyond scope)

DS-GA 3001005 | Lecture 5



Practice: Deep Q-Network (DQN)

DQN predicts q(s, a) with two Neural Networks to learn at every step
from stable buffers of experiences, with no model of environment

Initialize w, w'@'8t, 7(s) and s arbitrarily
Loop forever:

Select and take a from s following = (s), observe r¢;4 and s’
(5:0) = 9u(s.) ) Tugu(s.0)

Update 7 at s given qu(s, a) by e-greedy soft update

w=w-—a (rt+1 +ymaxq,e
a

Store transition (St, at, rt+1, St+1) in @ Replay Buffer

s=5s'

Periodically:
Sample mini-batches from the Replay Buffer
Loop through these mini-batches to further update w
Update wtarset . w

DS-GA 3001005 | Lecture 5



Deep RL Research

Novelty of DQN (Mnih et al., Nature 2015)
1. Convolutional Neural Network creating states from raw pixels

2. Experience Replay buffer storing set of past experiences e; =
(Si, @, Iiiq, Sipq) from which minibatches are randomly sampled

3. Target network updated periodically (frozen between updates)

Convolution Convolution Fully connected Fully connected

N
‘\‘DE]

DS-GA 3001 005 | Lecture 5



Deep RL Research

Perceptually similar states are mapped to nearby points
in the high-dimentional CNN embedding space

» 2D t-SNE representations in last CNN layer assigned to Space Invaders states

%

DS-GA 3001 005 | Lecture 5 Mnih et al,, Nature 2015



Deep RL Research

DQN can train a large ANN with stochastic gradient
descent in a stable manner to identify winning actions

» Temporal evolution of average score-per-episode and predicted Q-values
1 i N\\%
I“ Wm h

Mnih et al., Nature 2015

b

m‘M wwﬁj,'

ﬁ'§'§§§§'§

DS-GA 3001005 | Lecture 5



Deep RL Research

Disabling DQN'’s replay memory and/or separate target
Q-network has a detrimental effect on performance

> Effects of Experience Replay and Separate Target Q-Network on performance

Game V\_Iith replay, _With replay, Wit_hout replay, Vl_lithout replay,
with target Q without target Q with target Q without target Q
Breakout 316.8 240.7 10.2 3.2
Enduro 1006.3 831.4 141.9 291
River Raid 7446.6 4102.8 2867.7 1453.0
Seaquest 2894.4 822.6 1003.0 275.8
Space Invaders 1088.9 826.3 373.2 302.0

Mnih et al., Nature 2015

DS-GA 3001005 | Lecture 5



Deep RL Research

DQN outperforms all linear methods and achieve level
comparable to that of professional human players

» Comparison of DQN performance vs. best RL from 2015 on 49 Atari video games

Game DQN Linear
Breakout 316.8 3.00
Enduro 1006.3 62.0

River Raid 7446.6 2346.9
Seaquest 2894.4 656.9
Space Invaders 1088.9 301.3

Mnih et al., 2015

,, T

00 20 0 w0 s 60 1000 4s00%

DS-GA 3001 005 | Lecture 5



Deep RL Research

DDQN outperforms DQN by reducing the overoptimism
due to value estimation errors

» Comparison of DDQN performance vs. DQN on 57 Atari video games

Alien Space Invaders

Double DQN estimate

Double DQN true value
BNttt

Value estimates
o 8 om oo o

050 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
‘Training steps (in millions)

Wizard of Wor Asterix
| "

Value estimates
(log scale)

5 0 50 100 150 20
Training steps (in millions) Training steps (in millions)

DS-GA 3001 005 | Lecture 5 van Hasselt, Silver, 2015



Deep RL Research

Deep RL is a fertile research area

» Performance has improved dramatically in past few years:

>

>
>
| 4

Deep Q-Network (2014)
Deepmind AlphaGo (2016)
Deepmind AlphaZero (2018)
OpenAl ChatGPT (2022)

» Some key open questions: (lectures 6-9)

>

»

How best to build objective measures to optimize function parameters?

Can we directly parameterize and optimize a policy function?
Would such direct policy optimization benefit from also learning values?

» Can we learn a model of the environment? How best to use a model?

> How best to build the agent state? (including what it stores in memory)

> How best to improve data sampling efficiency?

DS-GA 3001005 | Lecture 5



DQN learns to play Atari

Deep Q-network training on video game Seaquest

(Source: Sprague N., 2015)

DS-GA 3001005 | Lecture 5


https://youtu.be/5WXVJ1A0k6Q

Thank you!



