
DS-GA 3001 005 | Lecture 4
Reinforcement Learning

Jeremy Curuksu, PhD
NYU Center for Data Science
jeremy.cur@nyu.edu

February 21, 2024

DS-GA 3001 RL Curriculum

Reinforcement Learning:
▶ Introduction to Reinforcement Learning
▶ Multi-armed Bandit
▶ Dynamic Programming on Markov Decision Process
▶ Model-free Reinforcement Learning
▶ Value Function Approximation (Deep RL)
▶ Policy Function Approximation (Actor-Critic)
▶ Planning from a Model of the Environment
▶ Examples of Industrial Applications
▶ Advanced Topics and Development Platforms

DS-GA 3001 005 | Lecture 4

Reinforcement Learning

Last week: Dynamic Programming on MDPs
▶ Markov Decision Process
▶ Value Functions and Bellman Equations
▶ Dynamic Programming

Today: Model-free Reinforcement Learning
▶ Monte Carlo and Temporal Difference
▶ Sample-based Prediction
▶ Sample-based Control
▶ Off-policy Learning

DS-GA 3001 005 | Lecture 4

Generalization to Model-free RL

Sampled-based Reinforcement Learning

▶ Dynamic Programming requires a model of state
transitions and rewards to carry out a one-step
look-ahead full-width backup at each iteration

▶ Problem: In most cases, a MDP model of state
transitions and rewards is not available

▶ Solution: Sample the state-action space

DS-GA 3001 005 | Lecture 4

Monte Carlo and Temporal
Difference

DS-GA 3001 005 | Lecture 4

Sampled-based RL

Use sample of experience to learn without model

▶ RL goal is to learn vπ from series of experience under policy π:

vπ(s) = E
π
(Gt|s)

▶ Instead of updating true expected return, sample its average:

vt+1(st) = vt(st) + αt

(T∑
k=0

γkrt+k+1 − vt(st)
)

▶ This requires sampling an entire episode for each update

▶ This is called Monte-Carlo policy evaluation

DS-GA 3001 005 | Lecture 4

Example of MC Policy Evaluation

Case Study: Blackjack

Goal: Draw cards so that their sum > dealer’s sum and ≤ 21

Environment dynamics:
▶ Initial state: 2 cards for player,

2 cards for dealer
▶ Dealer shows one of its cards
▶ Face cards = 10, Ace = 1 or 11
▶ Player requests cards 1 by 1
▶ When player exits dealer draws

cards until dealer’s sum > 17

States:
▶ Agent’s cards (sum of points)
▶ Dealer’s showing card
▶ Boolean that represents whether the agent has a usable ace

DS-GA 3001 005 | Lecture 4

Example of MC Policy Evaluation

Case Study: Blackjack

Goal: Draw cards so that their sum > dealer’s sum and ≤ 21

Actions:
▶ Draw another card (automatically draw if sum < 12)
▶ Stop and terminate

Rewards:
▶ 0 when agent or dealer draw cards
▶ -1 (lose) if agent’s sum > 21
▶ -1 (lose) if agent stops and agent’s sum ≤ dealer’s sum
▶ +1 (win) if agent stops and agent’s sum > dealer’s sum
▶ No discounting

DS-GA 3001 005 | Lecture 4

Results of Policy Evaluation on Blackjack for
policy that exits only when sum is 20 or 21

DS-GA 3001 005 | Lecture 4

Temporal Difference Learning

Sample Bellman equations instead of full episodes

▶ DP estimates values of states based on estimates of values of
successor states, without waiting for a final outcome

vπ(s) = E
π
(Gt|s) = E(rt+1 + γ vπ(st+1) | s)

∀s , vk+1(s) =
∑
a

π(a | s)
∑
s′, r

p(s′, r | s,a) [r + γ vk(s′)]

▶ Instead of updating true expected DP target, sample it:

vt+1(st) = vt(st) + αt (rt+1 + γ vt(st+1)− vt(st))

▶ This does not require sampling entire episodes for each update

▶ This is called Temporal Difference policy evaluation
DS-GA 3001 005 | Lecture 4

Bias-variance tradeoff of MC vs. TD
MC samples to learn vπ online from entire episodes:
▶ MC must wait until end of episode before return is known
▶ MC can only learn from complete sequences
▶ MC only works for episodic (terminating) environments
▶ Return Gt = (rt+1 + γ rt+2 + ...) is an unbiased estimate of vπ(st)

...but has high variance

TD samples and bootstraps to learn vπ online:
▶ TD learns after every step, before knowing the final outcome
▶ TD can learn from incomplete sequences
▶ TD works in continuing (non-terminating) environments
▶ TD target rt+1 + γ v(st+1) is a biased estimate of vπ(st)

...but has lower variance
DS-GA 3001 005 | Lecture 4

Case Study: Drive Home∗

An episode driving back home from the office...

State Elapsed Predicted Predicted
Time (min) Time to Go Total Time

Leave office 0 30 30
Reach car, raining 5 35 40
Exit highway 20 15 35
Behind truck 30 10 40
Home street 40 3 43
Arrive home 43 0 43

* Sutton and Barto, 2018
DS-GA 3001 005 | Lecture 4

Case Study: Drive Home∗

An episode with Monte Carlo vs. Temporal Difference

Monte Carlo Temporal Difference

* Sutton and Barto, 2018
DS-GA 3001 005 | Lecture 4

Convergence of MC vs. TD

MC and TD both converge to the same values as N→ ∞,
but what about finite experience?

Case study: 2 states A and B, no discounting, N = 8 episodes:

A, 0 then B, 0
B, 1
B, 1
B, 1
B, 1
B, 1
B, 1
B, 0

What are v(A) and v(B)?

DS-GA 3001 005 | Lecture 4

Convergence of MC vs. TD

MC and TD both converge to the same values as N→ ∞,
but what about finite experience?

Case study: 2 states A and B, no discounting, N = 8 episodes:

A, 0 then B, 0
B, 1
B, 1
B, 1
B, 1
B, 1
B, 1
B, 0

DS-GA 3001 005 | Lecture 4

Convergence of MC vs. TD

MC and TD both converge to the same values as N→ ∞,
but what about finite experience?
▶ Repeatedly sampling a finite number of episodes is equivalent

to sampling from an empirical model

▶ MC converges to best mean-squared fit for observed returns:

v(s) → argmin
∑
i,t

(
Git − v(sit)

)2

MC does not exploit sequential dependence of states

▶ TD converges to solution of max likelihood Markov model:

v(s) →
∑
s′, r

p̂(s′, r | s) [r + v(s′)]

TD exploits the Markov property
DS-GA 3001 005 | Lecture 4

Convergence of MC vs. TD

MC and TD both converge to the same values as N→ ∞,
but what about finite experience?
▶ Repeatedly sampling a finite number of episodes is equivalent

to sampling from an empirical model

▶ MC converges to best mean-squared fit for observed returns:

v(s) → argmin
∑
i,t

(
Git − v(sit)

)2

AB case study: v(A) = 0 , v(B) = 0.75

▶ TD converges to solution of max likelihood Markov model:

v(s) →
∑
s′, r

p̂(s′, r | s) [r + v(s′)]

AB case study: p̂(B,0 |A) = 1 , v(B) = 0.75 ⇒ v(A) = 0.75
DS-GA 3001 005 | Lecture 4

DP vs. MC vs. TD

Dynamic Programming Monte Carlo Temporal Difference

Bootstrapping: update involves an estimate

DP bootstraps MC does not bootstrap TD bootstraps

Sampling: update samples an expectation

DP does not sample MC samples TD samples

DS-GA 3001 005 | Lecture 4

n-step TD and TD(λ)

n-step TD: Temporal Difference TD(λ): Weighted sum of
learning from n-step updates all possible n-step updates

Gt:t+n = rt+1 + γrt+2 + ...+ γn−1rt+n + γnv(st+n) Gλt = (1 − λ)
∞∑
n=1

λn−1 Gt:t+n

Sutton and Barto, 2018

DS-GA 3001 005 | Lecture 4

Policy Evaluation Method Space
Width of search vs. Depth of search

DS-GA 3001 005 | Lecture 4

Sample-based Control

DS-GA 3001 005 | Lecture 4

Generalized Policy Iteration

All RL methods are Generalized Policy Iteration methods

DS-GA 3001 005 | Lecture 4

Generalized Policy Iteration

All RL methods are Generalized Policy Iteration methods

DS-GA 3001 005 | Lecture 4

Monte Carlo Policy Iteration

Find a better policy π′ given estimated value of π

▶ Recall the Policy Improvement theorem:

∀π, ∀ s : π′(s) = argmax
a

qπ (s,a) is better or same as π(s)

▶ Policy improvements over v(s) require a model =⇒ use q(s,a)

▶ Greedy policy improvements do not explore =⇒ use ϵ-greedy

▶ ϵ-greedy algorithm:
▶ Select random action (explore) with p = ϵ

▶ Select greedy action (exploit) with p = 1 − ϵ

▶ Theorem: Monte-Carlo control with ϵ-greedy converges to the
optimal action-value function q(s,a) → q∗(s,a)

DS-GA 3001 005 | Lecture 4

Practice: Monte Carlo RL Algorithm

MC RL computes q(s,a) as moving average over complete episodes,
learning “episode by episode” with no model of the environment

Initialize q(s, a) and π(s) arbitrarily

Loop forever:

Initialize s0

Experience an episode (s0, a0, r1, s1, a1, r2, ..., rT) following π:

Loop for each step t of episode:

G = rt+1 + γ rt+2 + ...+ γT rt+1+T

q(s, a) = q(s, a) + α (G− q(s, a))

Update π at s given q(s, a) by ϵ-greedy soft update

DS-GA 3001 005 | Lecture 4

Practice: ϵ-Greedy Soft Policy

Select random action with probability ϵ

Select greedy action with probability 1 − ϵ

Loop for all a in s:

a∗ = argmax
a

q(s,a)

π(s) =

1 − ϵ+ ϵ
|A(s)| for a = a∗

ϵ
|A(s)| for a ̸= a∗

∗|A(s)| is the number of possible actions in s

DS-GA 3001 005 | Lecture 4

Temporal Difference Policy Iteration

Update Action-Value Functions with ”SARSA”:

▶ Apply TD(0) to q(s,a):

q(s,a) = q(s,a) + α (r + γ q(s′,a′)− q(s,a))

▶ Update π(s) given q(s,a) by ϵ-greedy soft update

▶ Same as MC algorithm but instead use TD(0)
to update q(s,a)

▶ Compared to MC, TD can learn online at every
step, it can learn from incomplete episodes,
and it has lower variance

DS-GA 3001 005 | Lecture 4

Practice: SARSA TD Algorithm

SARSA TD computes q(s,a) at every step based on previous q-value
estimates (bootstrapping), with no model of the environment

Initialize q(s, a) and π(s) arbitrarily

Initialize s

Select a from s following π(s)

Loop forever: (or for each step t of an episode)

Take a, observe rt+1 and s′

Select a′ from s′ following π(s′)

q(s, a) = q(s, a) + α (rt+1 + γ q(s′, a′)− q(s, a))

Update π at s given q(s, a) by ϵ-greedy soft update

s = s′, a = a′

DS-GA 3001 005 | Lecture 4

Off policy learning

DS-GA 3001 005 | Lecture 4

On-policy vs. Off-policy RL
On-policy learning
▶ “Learn on the job”: Learn about policy π from experience

sampled from π (that is, by following π)

Off-policy learning
▶ “Look over the agent’s shoulder”: Learn about a target policy π

from experience sampled from a behaviour policy b
▶ Evaluate π by computing vπ(s) or qπ(s,a) while following b

(s0,a0, r1, s1,a1, r2, ..., rT) ∼ b
▶ Motivations:

▶ Learn about optimal policy while following exploratory policy
▶ Re-use experience from old policies (Experience Replay)
▶ Learn from observing humans or other agents
▶ Learn about multiple policies while following one policy

DS-GA 3001 005 | Lecture 4

Off-policy Q-learning

Q-learning estimates the value of the greedy policy:

qt+1(s,a) = qt(st,at) + αt

(
rt+1 + γmax

a′
qt(st+1,a′)− qt(st,at)

)
▶ Q-learning systematically updates the greedy policy whatever

the behavior policy followed is, thus keeping learning focused
on greedy actions even when the agent explores other actions

▶ Theorem: Q-learning control converges to the optimal action
value function, q→ q∗, as long as we take each action in each
state infinitely often. No need for greedy behavior because we
update q-values for the greedy behavior anyway!

DS-GA 3001 005 | Lecture 4

Practice: Q-learning TD Algorithm

Q-learning computes q(s,a) at every step using Bellman optimality
equation (bootstrapping), with no model of the environment

Initialize q(s, a) and b(s) arbitrarily

Initialize s

Loop forever: (or for each step t of an episode)

Select and take a from s following b(s), observe rt+1 and s′

q(s, a) = q(s, a) + α

(
rt+1 + γmax

a′
q(s′, a′)− q(s, a)

)
Update b at s given q(s, a) by ϵ-greedy soft update

s = s′

DS-GA 3001 005 | Lecture 4

SARSA vs. Q-learning Example

Cliff Walking Gridworld
▶ Comparison of performance of on-policy (Sarsa) and off-policy (Q-learning)

methods with ϵ-greedy action selection (ϵ = 0.1)

DS-GA 3001 005 | Lecture 4

Upward Bias of Q-learning

Q-learning uses the same Q-function to select and
evaluate actions, leading to a self-fulfilling prophecy

▶ TD target rt+1 + γmax
a′

q(s′,a′) is a biased sample of q∗(s,a)

▶ Same Q-value estimate used to select a′ and evaluate q(s′,a′)

max
a′

q(s′,a′) = q(s′, argmax
a′

q(s′,a′))

▶ This tends to overselect overestimated values and underselect
underestimated values, perpetuating an upward bias

▶ Solution: Decouple functions used for selection vs. evaluation

▶ This is called Double Q-learning

DS-GA 3001 005 | Lecture 4

Double Q-learning

Double Q-learning uses independent Q-functions to
select vs. evaluate actions

▶ Store two functions q1 and q2:

q1(s,a) = q1(s,a)+α

(
rt+1 + γ q1(s′, argmax

a′
q2(s′,a′))− q1(s,a)

)

q2(s,a) = q2(s,a)+α

(
rt+1 + γ q2(s′, argmax

a′
q1(s′,a′))− q2(s,a)

)
▶ At each step:

▶ Update either q1 or q2 (e.g., select each with p = 0.5)

▶ Act by ϵ-greedy soft update using q1 or q2 (or q1 + q2)

DS-GA 3001 005 | Lecture 4

Double Q-learning Example

The Roulette

DS-GA 3001 005 | Lecture 4

Double Q-learning Example

Double Q-learning outperforms Q-learning by reducing
the overoptimism due to value estimation errors

▶ Comparison of Double Q-learning vs. Q-learning on the roulette case study

van Hasselt, 2010

DS-GA 3001 005 | Lecture 4

Double Q-learning Example

Double Q-learning outperforms Q-learning by reducing
the overoptimism due to value estimation errors

▶ Comparison of DDQN performance vs. DQN on 57 Atari video games

van Hasselt, Silver, 2015

DS-GA 3001 005 | Lecture 4

Today’s Takeaways

MC and TD can learn optimal policies without model, by
sampling expected returns across the state-action space

▶ MC samples entire episodes and updates values one episode
at a time. It is unbiased but can have large variance because
episodes can be very different from one another

▶ TD bootstraps to update values at every step, shifting each
estimate toward the estimate that immediately follows it

▶ When sampling is finite, TD is more stable than MC but can be
more biased toward wrong results

▶ Q-learning is an off-policy TD algorithm which focuses on
learning the optimal policy while sampling other policies

DS-GA 3001 005 | Lecture 4

Thank you!

DS-GA 3001 005 | Lecture 4

