DS-GA 3001 005 | Lecture 2

Reinforcement Learning

Jeremy Curuksu, PhD
NYU Center for Data Science
jeremy.cur@nyu.edu

February 7, 2024

DS-GA 3001 RL Curriculum

Reinforcement Learning:

| 2

vV VvV V.V vV vV VY

Introduction to Reinforcement Learning
Multi-armed Bandits

Dynamic Programming on Markov Decision Process
"Model-free” Reinforcement Learning

Value Function Approximation (Deep RL)

Policy Function Approximation (Actor-Critic)
Planning from a Model of the Environment
Examples of Industrial Applications

Advanced Topics and Development Platforms

DS-GA 3001005 | Lecture 2

Multi-armed Bandit

Last week:
» What is Reinforcement Learning?
» Key components of Reinforcement Learning
» Introduction to the Gym Python library

Today:
» Multi-armed Bandit with action values
» Upper Confidence Bound
» Bayesian Bandit
» Policy Gradient Bandit

DS-GA 3001 005 | Lecture 2

Multi-armed Bandit with
action values

What is Multi-armed Bandit?

DS-GA 3001005 | Lecture 2

What is Multi-armed Bandit?

The Multi-armed Bandit problem

» Reinforcement learning uses data it receives to
evaluate actions (correct actions are not given),
which creates a need to explore

» A Bandit is a RL problem involving learning to act in
only one situation: 1 state, kR possible actions

» No sequential structure, past actions do not
influence the future: the distribution of reward r;
given a; is identical and independent across time

DS-GA 3001 005 | Lecture 2

What is Multi-armed Bandit?

Example of Multi-armed Bandit problem

Week 1 A e

$$
Week 2 B g
Week 3 ?

Which lever would you pull?

DS-GA 3001 005 | Lecture 2

What is Multi-armed Bandit?

Example of Multi-armed Bandit problem

Week 1 A @
$

Week 2 B

Week 3 B e

Week 4 ?

How about now?

DS-GA 3001 005 | Lecture 2

Exploration vs. Exploitation

Online decision-making involves a fundamental choice:

Exploitation:
Maximize performance using current knowledge

Exploration:
Increase knowledge

» The best strategy may involve short-term sacrifices

» The agent needs gather enough information to make the best
overall decisions

DS-GA 3001 005 | Lecture 2

Multi-armed Bandit Formalism

Problem Statement:

» The agent is faced repeateadly with a
choice among k different actions ("arms”)

» At each step t the agent selects an
action a;

» After each choice it receives a numerical reward r; that
depends on the action selected

» The distribution p(r|a) is fixed but unknown
» Goal is to maximize cumulative reward:
t
>
i=1

DS-GA 3001005 | Lecture 2

Exploit knowledge with action value

Action value for action a is the expected reward:
1
a(a) = Blre) = 3 pirle) x7 = lim 3 i
re 1=1

» An estimate is the average of the sampled rewards:

sum of rewards when a taken prior to t
number of times a taken prior to t

qi(a) =

» With an estimate of g(a), we can select an action:

Greedy policy: a; = argmax g¢(a)
a

DS-GA 3001005 | Lecture 2

Incremental implementation

The agent can learn online with a moving average:
t

Fora=a;: qt(a)—%;rila
4:(@) = G:+(a) + 1 (1 — Gt +(0))
Vara: a:(a) = g: +(a)

For non-stationary problems, the agent can track q(a):

:(a) = Gr+(a) + o (re — Gr4(0))

DS-GA 3001005 | Lecture 2

Explore new actions with c-greedy

The agent must explore to learn g-values

» Greedy selection always exploits current knowledge on
g-values to maximize reward, it never explore

» Alternative: Behave greedily most of the time, but every once
in a while select a random action

> c-greedy algorithm:
> Select random action (explore) with p = ¢
> Select greedy action (exploit) withp =1 — ¢
» c-greedy ensures all actions can be sampled indefinitely:
Jim qg:(a) = q(a)

DS-GA 3001005 | Lecture 2

Practice: k-armed Bandit Algorithm

k-armed Bandit both evaluates g(a) and improves a:

Initialize, for a = 1 to k:
q(a) =0
n(a) =0

Loop forever:

a = random action with p = epsilon

or = argmax q(a) with p = 1 - epsilon
Execute a, observe r
n(a) = n(a) + 1

q(a) = q(a) + 1/n(a) * (r - q(a))

DS-GA 3001005 | Lecture 2

Case Study: 10-armed testbed

k-armed Bandit problem Average performance of c-greedy

Distribution of g(a) vs. action a Average reward over 2000 runs vs. time step
15
s e=0.1 " l. npmo— " 'l‘ e N
2 " oy e=0.01
ol W, . v . b bt
. . , ity b hstmobions
o) o " Average &=0 (greedy)
’ o) .10 reward
4 J e
2
3
IIIIIIIII 0 T T T 1
3 5 6 8 9 10 1 250 500 750 1000

* Sutton and Barto, 1998 DS-GA 3001 005 | Lecture 2

Total regret L;

Analyzing regret in Multi-armed Bandit

>

>

>

How can we reason about the exploration trade off?
The (true) optimal value is: v, = max q(a)
Regret is the opportunity loss at step t: v, — g(a;)

Thus the best trade-off between exploration and exploitation
is the one that minimizes total regret L;:

t

Le=> (v. —q(a))

i=1

The agent cannot measure regret directly, but regret can be
used to analyze different RL algorithms on solved problems

DS-GA 3001005 | Lecture 2

Action Regret A,

Analyzing regret in Multi-armed Bandit

» The action regret A, for an action a is the difference between
the optimal value and the true value of a:

» Total regret can be defined by action regrets and action counts:

t

Le=> (v —q(a)) = Y_ Ni(a)(v. —q(a)) = Y _ Ni(a

i=1 ac(A) ac(A)

» Thus the best trade-off between exploration and exploitation
is the one that ensures small count for actions with large regret

DS-GA 3001 005 | Lecture 2

Upper Confidence Bound

Explore new actions with UCB

Upper Confidence Bound (UCB)

» For each action value g(a), compute an upper confidence u:(a)
such that g(a) < g¢(a) + ut(a)

» Select action that maximizes this Upper Confidence Bound:

a; = argmax [qt(a) + u(a)]
ac(A)

where:
Int

ui(a)=c (@)

» The UCB algorithm can achieve logarithmic expected total
regret (demonstration out of scope)

DS-GA 3001005 | Lecture 2

Explore new actions with UCB

Upper Confidence Bound (UCB)

a; = argmax [qi(a) +c¢ Int
t age(A) t N:(a)

» Uncertainty depends on number of times an action is selected:

» Small N:(a) = Large u;(a) < Estimated g-value uncertain
» Large Ni(a) = Small u;(a) < Estimated g-value is accurate

» UCB favors an action because its estimated g-value is high, or
because it has not been explored a lot relative to time elapsed

» UCB guarantees all actions will be explored without the need
to manually predefine an e-schedule

DS-GA 3001005 | Lecture 2

Case Study: 10-armed testbed

Average performance of -greedy and UCB algorithms
Average reward over 2000 runs vs. time step

UCB c=2

E-greedy € =0.1

Average
reward
0.5f

1 750 300 750 T000

Steps

DS-GA 3001005 | Lecture 2

Bayesian Bandit

The Bandit Model

A Bandit model is a reward transition function:

p(rla)=p(ra=rlar=a) < r(a)=E(r,a)

where E(r|a) = Z p(rla) xr= lim - Zr,

DS-GA 3001 005 | Lecture 2

The Bandit Model

A Bandit model is a reward transition function:

p(rla)=p(ru=rla;=a) & r(a)=E(r,a)
where E(r|a) = Zpr\ ><r_ I|m 7Zr,

» Bandit model-based algorithm: (Expectation model)

fi(a) = fi—s(a) + o (1t — Fr—a(a))

DS-GA 3001005 | Lecture 2

The Bandit Model

A Bandit model is a reward transition function:

p(rla)=p(r=rla=a) & r(a)=E(r,a)

where E(r|a) = Z p(rla) x r=lim_ % Zr,-
» Bandit model-based algorithm: (Expectation model)
fe(a) = Fe—q(a) + a(re — Fe—1(a))
» Bandit value-based algorithm:
gi(a) = gi—1(a) + a(rr — gi—+(a)) ..Identical?

DS-GA 3001005 | Lecture 2

Bayesian Bandit

Bayesian Bandit models the full distribution of rewards:

» Bayesian Bandit tracks a parameterized distribution function
of expected reward p(E(r)|0, a), called likelihood function

> Selects actions based on p(E(r)|#,a) e.g., using UCB

» Uses reward observed to update posterior distributions of 4:
pe(6]r) oc p(E(r)|0,a) x pr_+(6]r)

> For example, 0 = (i, 0)q if p(E(r)|6, a) are Gaussian distributions

DS-GA 3001005 | Lecture 2

Example: Bayesian Bandit with UCB

Apply UCB to a Bayesian Bandit model:

Po(Q
Q(a)
AN
Q@) '
| 1 \l
Q u@) p@)
F——co(a,) —
F——"—c0(a) —

» Define Gaussian likelihood function: p(E(r)|0,a) = ps(g(a))
with mean z:(a) and standard deviation o(a) for each action

> Select greedy action with UCB: a; = arg max (g:(a) + cot(a))
a

» Adjust u¢(a) and o+(a) for a; based on r; actually observed

DS-GA 3001005 | Lecture 2

Bandit with Thompson Sampling

Bayesian model with Probability Matching:

» Instead of selecting actions from g-values with highest mean
according to py(qg(a)) with e-greedy or UCB, Thompson
sampling explicitly samples g-values from py(q(a))

» Thompson sampling selects action a according to probability
that g(a) is the maximum given the data sampled so far:

m(a) =p (q(a) = n:ﬁrxq(a’) | historyt,1>
m(a) =E (I (q[(a) = max qt(a’)> | historytq)

~—Z((ait@) = maxay(@)))

where Z(True) =1, Z(False) =0

DS-GA 3001005 | Lecture 2

Toward Sequential RL and MDP...

Information State Space Bandit Model

» Bayesian Bandit tracks an evolving probability distribution of
reward, which can be considered an information state s;

» Each action a; causes a transition to a new state s, (by
adding information), which is a sequential RL problem

» The tree of possible chains of events grows extremely rapidly,
so approximate RL methods (lectures 5-7) are required

DS-GA 3001 005 | Lecture 2

Toward Sequential RL and MDP...

Contextual Bandits

» Bandit with more than one state...

» If context on distinctive states are given to the agent, it can
learn actions and values specific to each state

» In this case, the actions selected may depend on the state, but
they do not affect which next states can be accessed later

» This is a simplified case of more general sequential RL
problem where actions may affect next states and thus future
possible rewards

DS-GA 3001 005 | Lecture 2

Policy Gradient in
Multi-armed Bandit

Policy Gradient Bandit

Can we learn a policy without learning values?
» Yes we can!

» Define a parameterized function my(a) : a — py(a) and learn
parameters # that maximize a performance measure J,,(a)

» my(a) can be arbitrary (just need distinguish possible actions)
> J.,(a) can also be arbitrary (e.g. "always turn right in a maze”)

» If J.,(a) is unknown, it needs to be learned... It is often defined
based on g;(a) = the critic in Actor-Critic algorithms:

0 =0+ aVgq(a)

» Out of scope for today (covered in depth in lecture 6)

DS-GA 3001005 | Lecture 2

Today’s Takeaways

Bandits is an RL problem where there is only one state

» The fundamental problem is to balance exploration and
exploitation to behave optimally

» To balance exploration and exploitation, the agent can use
e-greedy which is a simple but efficient way to do it

» ...or UCB which explicitly measures uncertainty to balance
exploration and exploitation

» ...or a parameterized policy with arbitrary objective measure J,

» For example, J, can be the g-values parameterized by their
means and standard deviations, themselves updated based on
the sampled rewards, as done in Thompson Sampling

DS-GA 3001005 | Lecture 2

Thank you!

