DS-GA 3001 007 | **Lecture 7**

Reinforcement Learning

Jeremy Curuksu, PhD NYU Center for Data Science jeremy.cur@nyu.edu

March 23, 2023

DS-GA 3001 RL Curriculum

Reinforcement Learning:

- Introduction to Reinforcement Learning
- Multi-armed Bandit
- Dynamic Programming on Markov Decision Process
- Model-free Reinforcement Learning
- Value Function Approximation (Deep RL)
- Policy Function Approximation (Actor-Critic)
- Planning from a Model of the Environment
- Examples of Industrial Applications
- Advanced Topics and Development Platforms

Reinforcement Learning

Lecture 5: Value Function Approximation

- Categories of Functions in Reinforcement Learning
- Approximation of State-Update and Value Functions
- Deep Reinforcement Learning

Today: Policy Function Approximation

- Policy Gradient Reinforcement Learning
- Advanced Sampling of Policy Gradient
- Reinforcement Learning in Continuous Action Space

RL Functions and Approximations

- All key components of an RL agent are functions
 - State update functions map observations to states
 - Value functions map states to values
 - Policy functions map states to actions
 - Models map states and actions to next states and rewards
- Functions can be parameterized and approximated by linear or non-linear gradient methods e.g., Deep Learning
- ▶ A parameterized policy function is called an "actor" function. Policies are action-selection functions which can be derived determistically from a value function (example: ϵ -greedy soft updates), but more generally they can be parameterized
- ► Challenge: Supervised learning assumptions are often violated

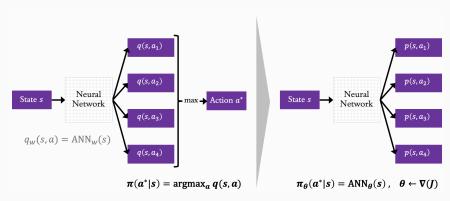
Policy Gradient

Reinforcement Learning

Policy-based RL

Predict optimal action using a Deep Neural Network

▶ Replace ϵ -greedy function by an ANN model



Policy-based RL

Optimize a Parametric Policy Function

$$\pi_{\theta}(a|s) \approx p(a|s,\theta)$$

► The function can be a linear combination of features, often with a soft-max to define action-probabilities normalizing to 1:

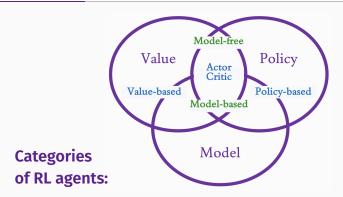
$$\pi_{\theta}(a|s) = \frac{e^{\theta^{T}\phi(s,a)}}{\sum_{k} e^{\theta^{T}\phi(s,a_{k})}}$$

Parameters θ can be updated incrementally by optimizing any objective measure of performance $J(\theta)$:

$$heta \sim rg \max_{ heta} {\it J}(heta)$$

• Gradient ascent converges to global optimum if $J(\theta)$ is known

Policy-based RL



- ▶ Model-based: Use a model to learn policy and/or value function (lecture 3, 8)
- Model-free: Learn policy and/or value function without model (lecture 4-5)
- Value-based: Learn value function, not policy function (lectures 4-5)
- Policy-based: Learn policy function, not value function (today)
- Actor-Critic: Learn policy and value functions (today)

Model-, Value-, or Policy-based RL?

► Model-based RL:

- ✓ Learns 'all there is to know' from the data
- √ Very well understood method (supervised learning)
- × Objective captures irrelevant information
- × May focus compute/capacity on irrelevant details
- × Deriving a policy from a model (planning) is non-trivial

Value-based RL:

- √ Focus compute/capacity on how actions affect reward
- √ Relatively well-understood (similar to regression)
- imes May still focus compute/capacity on irrelevant details

Policy-based RL:

- ✓ Direct search of optimal policy = true objective of RL
- × Ignores all other learnable knowledge

Pros & Cons of Policy-based RL

Strengths:

- √ Focus on true objective of RL. Sometimes policies are simple while values and models are complex
- √ Can learn high-dimensional or continuous action policies
- √ Can learn stochastic (= probabilistic) policies
- \checkmark Can learn appropriate levels of exploration autonomously (no need to manually define an ϵ -exploration schedule)

Limitations:

- x Ignores all other learnable knowledge so may not efficiently use the available data
- imes Easily trapped in local optima (actor is what creates data)
- × May not generalize well when environment changes

Policy Optimization using Gradient

Define Policy's Objective Measure of Quality

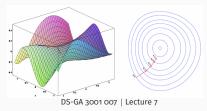
Ex 1 (Episodic Case): Maximize expected return in s_0 :

$$J_{\mathsf{O}}(heta) = \mathop{\mathbb{E}}_{\pi_{ heta}}(\mathsf{G}_{\mathsf{t}}|\mathsf{s}_{\mathsf{O}}) = \mathsf{v}_{\pi_{ heta}}(\mathsf{s}_{\mathsf{O}})$$

Ex 2 (Continuous Case): Maximize average return across states:

$$J_{avg}(\theta) = \mathop{\mathbb{E}}_{\pi_{\theta}}(G_{\mathsf{t}}|\mathsf{s}) = \sum_{\mathsf{s}} d_{\pi_{\theta}}(\mathsf{s}) \, \mathsf{v}_{\pi_{\theta}}(\mathsf{s})$$

Update policy parameters by stochastic gradient ascent



Policy Optimization using Gradient

Update policy parameters by stochastic gradient ascent

▶ To find a maximum of $J(\theta)$, define the gradient of $J(\theta)$ and move θ in the direction of positive gradient at every step:

$$\nabla_{\theta} J(\theta) = \begin{bmatrix} \frac{\partial J(\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial J(\theta)}{\partial \theta_n} \end{bmatrix}$$
$$\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} J(\theta)$$

- Some methods do not use gradient (out of scope):
 - Hill climbing
 - Genetic algorithms

Policy Optimization using Gradient

How can the agent learn

$$abla_{ heta} extsf{J}(heta) =
abla_{ heta} \ \mathbb{E}_{\pi_{ heta}}(extsf{G}_{t}| extsf{s})$$

?

Sample what? Compute what?

Policy Gradient Theorem

Theorem's Proof

$$\begin{split} \nabla_{\theta} J(\theta) &= \nabla_{\theta} \ \mathop{\mathbb{E}}_{\pi_{\theta}}(G_{t}|s) \\ &= \nabla_{\theta} \sum_{s} \mu(s) \sum_{a} \pi_{\theta}(a|s) G_{t} \\ &= \sum_{s} \mu(s) \sum_{a} \nabla_{\theta} \pi_{\theta}(a|s) G_{t} \\ &= \sum_{s} \mu(s) \sum_{a} \pi_{\theta}(a|s) \frac{\nabla_{\theta} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)} G_{t} \\ &= \mathop{\mathbb{E}}_{\pi_{\theta}} \left(G_{t} \frac{\nabla_{\theta} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)} \right) = \mathop{\mathbb{E}}_{\pi_{\theta}} \left(G_{t} \nabla_{\theta} \log \pi_{\theta}(a|s) \right) \end{split}$$

▶ In plain english: Gradient of the expected value of G_t under π_{θ} equals the expected value of G_t weighted by gradient of $\log \pi_{\theta}$

Policy Gradient Theorem

 \forall differentiable policy π_{θ} , the gradient of $J = \mathbb{E}_{\pi_{\theta}}(G_t|s)$ is:

$$abla_{\pi_{ heta}} \mathbb{E}(\mathsf{G}_t|\mathsf{s}) = \mathop{\mathbb{E}}_{\pi_{ heta}} \left(\mathsf{G}_t \, rac{
abla_{ heta} \, \pi_{ heta}(a|\mathsf{s})}{\pi_{ heta}(a|\mathsf{s})}
ight) = \mathop{\mathbb{E}}_{\pi_{ heta}} \left(\mathsf{G}_t \,
abla_{ heta} \, \log \pi_{ heta}(a|\mathsf{s})
ight)$$

Theorem's Implications

- ► The gradient of $J(\theta)$ can be sampled because it is equal to the expected value of some known quantities (G_t , π_θ , and $\nabla_\theta \pi_\theta$)
- Gradient updates of π_{θ} do not involve derivatives of the state distribution thus are agnostic to detailed dynamics of the MDP

Practice: MC Policy Gradient (REINFORCE)

REINFORCE update $\pi_{\theta}(a|s)$ using the policy gradient computed over complete episodes, with no model of the environment

Initialize θ arbitrarily

Loop forever:

Initialize so

Experience an episode $(s_0, a_0, r_1, s_1, a_1, r_2, ..., r_T)$ following π_θ :

Loop for each step *t* of episode:

$$G = r_{t+1} + \gamma r_{t+2} + ... + \gamma^{T} r_{t+1+T}$$

$$\theta = \theta + \alpha G \nabla_{\theta} \log(\pi_{\theta}(a|s))$$

Advanced Sampling of

Policy Gradient

Advanced Sampling of the Gradient $\nabla_{\theta} J(\theta)$

Variance can be reduced by adding a baseline to the MC target:

$$\theta_{t+1} = \theta_t + \alpha \left(G_t - v_{\pi}(s_t) \right) \nabla_{\theta} \log \pi_{\theta}(a|s_t)$$

► It is called the *advantage* of following π_{θ} relative to baseline:

$$\theta_{t+1} = \theta_t + \alpha \left(q_{\pi}(s_t, a) - v_{\pi}(s_t) \right) \nabla_{\theta} \log \pi_{\theta}(a|s_t)$$

A TD target can be used to learn at every step:

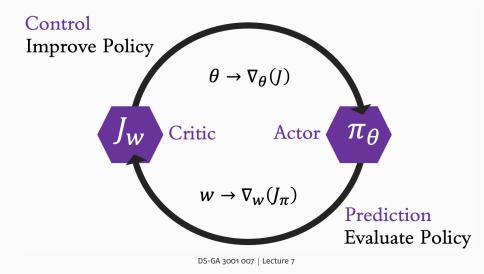
$$\theta_{t+1} = \theta_t + \alpha \left(r_{t+1} + \gamma \, \mathsf{v}_{\pi}(\mathsf{s}_{t+1}) - \mathsf{v}_{\pi}(\mathsf{s}_t) \right) \nabla_{\theta} \log \pi_{\theta}(\mathsf{a}|\mathsf{s}_t)$$

► Value function approximation refines (critics) the gradient:

$$heta_{t+1} = heta_t + lpha \left(r_{t+1} + \gamma \, v_{w}(s_{t+1}) - v_{w}(s_t) \right)
abla_{ heta} \log \pi_{ heta}(a|s_t)$$
DS-GA 3001 007 | Lecture 7

Generalized Policy Iteration

All RL methods are Generalized Policy Iteration methods



Practice: A3C Actor-Critic

Asynchronous Advantage Actor-Critic (A3C) updates π_{θ} using the policy gradient computed from v_{w} at every step, in any state s

Initialize w, θ , and s, arbitrarily

Loop forever:

Take a from s following $\pi_{\theta}(a|s)$, observe r_{t+1} and s'

$$\delta = r_{t+1} + \gamma \, v_{\mathrm{W}}(s_{t+1}) - v_{\mathrm{W}}(s_t)$$
 [TD-error = Advantage]

$$W_{t+1} = W_t - \alpha_1 \delta \nabla_W V_W(S_t)$$
 [Update of Critic]

$$\theta = \theta + \alpha_2 \, \delta \, \nabla_{\theta} \log \pi_{\theta}(a|s_t)$$
 [Update of Actor]

$$s = s'$$

Bias-variance tradeoff in A3C

Update policy gradient from multi-step TD error

- ► The full return $G_t = (r_{t+1} + \gamma r_{t+2} + ...)$ has high variance
- ► The TD target $r_{t+1} + \gamma v_w(s_{t+1})$ has high bias
- ► A useful middle ground is to define TD error with *n*-step return:

$$G_{t:t+n} = r_{t+1} + \gamma r_{t+2} + ... + \gamma^{n-1} r_{t+n} + \gamma^n v_w(s_{t+n})$$

• Or to define TD error with λ -returns as in TD(λ):

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_{t:t+n}$$

▶ BUT both require more compute/memory (can be prohibitively too slow), and must wait *n* steps before learning update occurs

A biased policy samples biased data

- The policy gradient objective only considers improvement under observed/sampled data
- ▶ But the policy is what drives the sampling of data, so the agent gets easily trapped in local optima, which perpetuate biases
- Entropy needs be increased (encourage exploration) without causing breakage due to widly different policies (instability)
- Many variants from original A3C method have been developed to address the bias-variance tradeoff of actor-critic RL
- For example to prevent instability and perpetuating biases, the policy can be regularised to not change too much

Trust Region Policy Optimization (TRPO)

- Prevent instability by regularizing $J(\theta)$ to limit the difference between subsequent policies (= limit speed of exploration)
- ► The difference between two probability distributions/densities is the Kullback-Leibler divergence *D_{KL}*:

$$D_{KL}(\pi_{old}||\pi_{\theta}) = \sum_{a} \pi_{old}(a|s) \log \frac{\pi_{\theta}(a|s)}{\pi_{old}(a|s)}$$

► TRPO defines a "trust-region" by maximizing this objective:

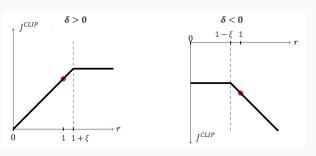
$$\nabla_{ heta} \left[\underset{\pi_{ ext{old}}}{\mathbb{E}} \left(\delta \frac{\pi_{ heta}(a|s)}{\pi_{ ext{old}}(a|s)} \right) - \eta \, D_{ ext{KL}}(\pi_{ heta}||\pi_{ ext{old}})
ight]$$

TRPO is especially useful for KT from good starting policies

Proximal Policy Optimization (PPO)

► PPO defines a trust region by regularizing the objective with a clipped probability ratio (similar to TRPO but simpler)

$$abla_{ heta} \left[\underset{\pi_{ ext{old}}}{\mathbb{E}} \left(\delta \operatorname{clip} \left(\frac{\pi_{ heta}(a|s)}{\pi_{ ext{old}}(a|s)}, \, \mathbf{1} - \xi, \, \mathbf{1} + \xi \right)
ight)
ight]$$



DS-GA 3001 007 | Lecture 7

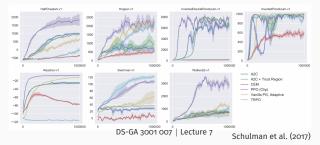
Schulman et al. (2017)

Proximal Policy Optimization (PPO)

▶ PPO defines trust region by regularizing objective with clipped probability ratio (same results as TRPO but simpler algorithm)

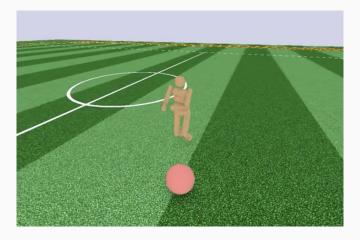
$$\nabla_{\theta} \left[\underset{\pi_{\mathrm{old}}}{\mathbb{E}} \left(\delta \operatorname{clip} \left(\frac{\pi_{\theta}(a|s)}{\pi_{\mathrm{old}}(a|s)}, \, \mathbf{1} - \xi, \, \mathbf{1} + \xi \right) \right) \right]$$

Benchmark of PPO performance on MuJoCo Gym environments



Example: Moving a Robot with PPO

Proximal Policy Optimization (PPO)



For more details: https://openai.com/blog/openai-baselines-ppo DS-GA 3001 007 | Lecture 7

Example: Moving a Robot with PPO

Proximal Policy Optimization (PPO)

(Source: DeepMind (2017))
DS-GA 3001 007 | Lecture 7

Reinforcement Learning in

Continuous Action Space

Policy Gradient for Continous Action Space

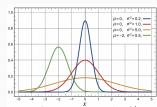
Policy Gradient easily extends to continous actions

- ► Instead of learning probabilities for discrete actions, RL can learn a statistics of continuous action-probability densities
- For example, an action can be chosen from a Gaussian density:

$$\pi_{ heta}(a|s) \sim \mathcal{N}(\mu_{ heta}(s), \sigma_{ heta}^2)$$

$$\forall \, \sigma^{\dagger} : \nabla_{ heta} J(\theta) \, = \, \mathbb{E}\left(\delta \, \nabla_{ heta} \log \pi_{ heta}(a|s_{ ext{t}})\right) \, pprox \, \delta \, rac{a - \mu_{ heta}(s)}{\sigma^2} \,
abla \mu_{ heta}(s)$$

 Sampling actions from a probability density guarantees exploration



DS-GA 3001 007 | Lecture 7

 \dagger In this example σ is predefined

Practice: CACLA algorithms

Continuous Actor-Critic Learning Automaton (CACLA) samples actions from a parameterized probability density $\pi_{\theta} \sim \mathcal{N}\left(\mu_{\theta}, \sigma_{\theta}^2\right)$, udpated from the gradient of v_w at every step, in any state s

Initialize w, θ , and s, arbitrarily

Loop forever:

Take a from s following $\mathcal{N}ig(\mu_{ heta}(\mathbf{s}), \sigma^2_{ heta}ig)$, observe r_{t+1} and \mathbf{s}'

$$\delta = r_{t+1} + \gamma \, \mathsf{v}_{\mathsf{w}}(\mathsf{s}_{t+1}) - \mathsf{v}_{\mathsf{w}}(\mathsf{s}_{t})$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha_1 \, \delta \, \nabla_{\mathbf{w}} \mathbf{v}_{\mathbf{w}}(\mathbf{s}_t)$$

If *
$$\delta > 0$$
: $\theta = \theta + \alpha_2 \delta \nabla_{\theta} \log \pi_{\theta}(a|s_t)$

$$s = s'$$

* The original CACLA algorithm (2007) updated actor iff sampled a_t increases value

Practice: DDPG algorithms

Deep Deterministic Policy Gradient (DDPG) generalizes CACLA and DQN by sampling actions from a probability density $\pi_{\theta} \sim \mathcal{N}\left(\mu_{\theta}, \sigma^2\right)$ udpated directly from the gradient of q_w learned by deep learning

Initialize w, θ , and s, arbitrarily

Loop forever:

Take a from s following $\mathcal{N}(\mu_{\theta}(s), \sigma^2)$, observe r_{t+1} and s'

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} - \alpha_{1} \left(\mathbf{r}_{t+1} + \gamma \, q_{w} \left(\mathbf{s}_{t+1}, \mu_{\theta} \left(\mathbf{s}_{t+1} \right) \right) - q_{w} \left(\mathbf{s}_{t}, a \right) \right) \nabla_{w} q_{w} (\mathbf{s}_{t}, a)$$

$$\theta = \theta + \alpha_2 \, \nabla_{\theta} q_t \, (\mathbf{s}_t, \mu_{\theta}(\mathbf{s}_t))$$

Store past transitions in a Replay Buffer

$$s = s'$$

Periodically:

Sample mini-batches from the Experience Replay Buffer Loop through these mini-batches to further update w and θ

Thank you!