
DS-GA 3001 007 | Lecture 7
Reinforcement Learning

Jeremy Curuksu, PhD
NYU Center for Data Science
jeremy.cur@nyu.edu

March 23, 2023

DS-GA 3001 RL Curriculum

Reinforcement Learning:
▶ Introduction to Reinforcement Learning
▶ Multi-armed Bandit
▶ Dynamic Programming on Markov Decision Process
▶ Model-free Reinforcement Learning
▶ Value Function Approximation (Deep RL)
▶ Policy Function Approximation (Actor-Critic)
▶ Planning from a Model of the Environment
▶ Examples of Industrial Applications
▶ Advanced Topics and Development Platforms

DS-GA 3001 007 | Lecture 7

Reinforcement Learning

Lecture 5: Value Function Approximation
▶ Categories of Functions in Reinforcement Learning
▶ Approximation of State-Update and Value Functions
▶ Deep Reinforcement Learning

Today: Policy Function Approximation
▶ Policy Gradient Reinforcement Learning
▶ Advanced Sampling of Policy Gradient
▶ Reinforcement Learning in Continuous Action Space

DS-GA 3001 007 | Lecture 7

RL Functions and Approximations
▶ All key components of an RL agent are functions

▶ State update functions map observations to states
▶ Value functions map states to values
▶ Policy functions map states to actions
▶ Models map states and actions to next states and rewards

▶ Functions can be parameterized and approximated by linear or
non-linear gradient methods e.g., Deep Learning

▶ A parameterized policy function is called an ”actor” function.
Policies are action-selection functions which can be derived
determistically from a value function (example: ϵ-greedy soft
updates), but more generally they can be parameterized

▶ Challenge: Supervised learning assumptions are often violated
DS-GA 3001 007 | Lecture 7

Policy Gradient
Reinforcement Learning

DS-GA 3001 007 | Lecture 7

Policy-based RL

Predict optimal action using a Deep Neural Network

▶ Replace ϵ-greedy function by an ANN model

DS-GA 3001 007 | Lecture 7

Policy-based RL

Optimize a Parametric Policy Function

πθ(a|s) ≈ p(a|s, θ)

▶ The function can be a linear combination of features, often
with a soft-max to define action-probabilities normalizing to 1:

πθ(a|s) =
e θTϕ(s,a)∑
k e θTϕ(s,ak)

▶ Parameters θ can be updated incrementally by optimizing any
objective measure of performance J(θ):

θ ∼ argmax
θ

J(θ)

▶ Gradient ascent converges to global optimum if J(θ) is known

DS-GA 3001 007 | Lecture 7

Policy-based RL

Categories
of RL agents:

▶ Model-based: Use a model to learn policy and/or value function (lecture 3, 8)
▶ Model-free: Learn policy and/or value function without model (lecture 4-5)
▶ Value-based: Learn value function, not policy function (lectures 4-5)
▶ Policy-based: Learn policy function, not value function (today)
▶ Actor-Critic: Learn policy and value functions (today)

DS-GA 3001 007 | Lecture 7

Model-, Value-, or Policy-based RL ?
▶ Model-based RL:

✓ Learns ‘all there is to know’ from the data
✓ Very well understood method (supervised learning)
× Objective captures irrelevant information
× May focus compute/capacity on irrelevant details
× Deriving a policy from a model (planning) is non-trivial

▶ Value-based RL:
✓ Focus compute/capacity on how actions affect reward
✓ Relatively well-understood (similar to regression)
× May still focus compute/capacity on irrelevant details

▶ Policy-based RL:
✓ Direct search of optimal policy = true objective of RL
× Ignores all other learnable knowledge

DS-GA 3001 007 | Lecture 7

Pros & Cons of Policy-based RL

▶ Strengths:
✓ Focus on true objective of RL. Sometimes policies are

simple while values and models are complex

✓ Can learn high-dimensional or continuous action policies

✓ Can learn stochastic (= probabilistic) policies

✓ Can learn appropriate levels of exploration autonomously
(no need to manually define an ϵ-exploration schedule)

▶ Limitations:
× Ignores all other learnable knowledge so may not

efficiently use the available data

× Easily trapped in local optima (actor is what creates data)

× May not generalize well when environment changes

DS-GA 3001 007 | Lecture 7

Policy Optimization using Gradient
Define Policy’s Objective Measure of Quality

▶ Ex 1 (Episodic Case): Maximize expected return in s0:

J0(θ) = E
πθ

(Gt|s0) = vπθ
(s0)

▶ Ex 2 (Continuous Case): Maximize average return across states:

Javg(θ) = E
πθ

(Gt|s) =
∑
s
dπθ

(s) vπθ
(s)

Update policy parameters by stochastic gradient ascent

DS-GA 3001 007 | Lecture 7

Policy Optimization using Gradient

Update policy parameters by stochastic gradient ascent

▶ To find a maximum of J(θ), define the gradient of J(θ) and move
θ in the direction of positive gradient at every step:

∇θ J(θ) =


∂J(θ)
∂θ1
...

∂J(θ)
∂θn


θt+1 = θt + α∇θ J(θ)

▶ Some methods do not use gradient (out of scope):
▶ Hill climbing
▶ Genetic algorithms

DS-GA 3001 007 | Lecture 7

Policy Optimization using Gradient

How can the agent learn

∇θ J(θ) = ∇θ Eπθ(Gt|s)

?
Sample what? Compute what?

DS-GA 3001 007 | Lecture 7

Policy Gradient Theorem

Theorem’s Proof

∇θ J(θ) = ∇θ E
πθ

(Gt|s)

= ∇θ

∑
s

µ(s)
∑
a

πθ(a|s)Gt

=
∑
s

µ(s)
∑
a

∇θ πθ(a|s)Gt

=
∑
s

µ(s)
∑
a

πθ(a|s)
∇θ πθ(a|s)
πθ(a|s)

Gt

= E
πθ

(
Gt

∇θ πθ(a|s)
πθ(a|s)

)
= E

πθ

(Gt∇θ log πθ(a|s))

▶ In plain english: Gradient of the expected value of Gt under πθ

equals the expected value of Gt weighted by gradient of log πθ

DS-GA 3001 007 | Lecture 7

Policy Gradient Theorem

∀ differentiable policy πθ, the gradient of J = Eπθ
(Gt|s) is:

∇θ E
πθ

(Gt|s) = E
πθ

(
Gt

∇θ πθ(a|s)
πθ(a|s)

)
= E

πθ

(Gt∇θ log πθ(a|s))

Theorem’s Implications

▶ The gradient of J(θ) can be sampled because it is equal to the
expected value of some known quantities (Gt, πθ, and ∇θ πθ)

▶ Gradient updates of πθ do not involve derivatives of the state
distribution thus are agnostic to detailed dynamics of the MDP

DS-GA 3001 007 | Lecture 7

Practice: MC Policy Gradient (REINFORCE)

REINFORCE update πθ(a|s) using the policy gradient computed over
complete episodes, with no model of the environment

Initialize θ arbitrarily

Loop forever:

Initialize s0

Experience an episode (s0, a0, r1, s1, a1, r2, ..., rT) following πθ :

Loop for each step t of episode:

G = rt+1 + γ rt+2 + ...+ γT rt+1+T

θ = θ + αG∇θ log(πθ(a|s))

DS-GA 3001 007 | Lecture 7

Advanced Sampling of
Policy Gradient

DS-GA 3001 007 | Lecture 7

Advanced Sampling of the Gradient ∇θ J(θ)

▶ Variance can be reduced by adding a baseline to the MC target:

θt+1 = θt + α (Gt − vπ(st))∇θ log πθ(a|st)

▶ It is called the advantage of following πθ relative to baseline:

θt+1 = θt + α (qπ(st,a)− vπ(st))∇θ log πθ(a|st)

▶ A TD target can be used to learn at every step:

θt+1 = θt + α (rt+1 + γ vπ(st+1)− vπ(st))∇θ log πθ(a|st)

▶ Value function approximation refines (critics) the gradient:

θt+1 = θt + α (rt+1 + γ vw(st+1)− vw(st))∇θ log πθ(a|st)

DS-GA 3001 007 | Lecture 7

Generalized Policy Iteration
All RL methods are Generalized Policy Iteration methods

DS-GA 3001 007 | Lecture 7

Practice: A3C Actor-Critic

Asynchronous Advantage Actor-Critic (A3C) updates πθ using the
policy gradient computed from vw at every step, in any state s

Initialize w, θ, and s, arbitrarily

Loop forever:

Take a from s following πθ(a|s), observe rt+1 and s′

δ = rt+1 + γ vw(st+1)− vw(st) [TD-error = Advantage]

wt+1 = wt − α1 δ∇wvw(st) [Update of Critic]

θ = θ + α2 δ∇θ log πθ(a|st) [Update of Actor]

s = s′

DS-GA 3001 007 | Lecture 7

Bias-variance tradeoff in A3C

Update policy gradient from multi-step TD error

▶ The full return Gt = (rt+1 + γ rt+2 + ...) has high variance

▶ The TD target rt+1 + γ vw(st+1) has high bias

▶ A useful middle ground is to define TD error with n-step return:

Gt:t+n = rt+1 + γrt+2 + ...+ γn−1rt+n + γnvw(st+n)

▶ Or to define TD error with λ-returns as in TD(λ):

Gλ
t = (1 − λ)

∞∑
n=1

λn−1 Gt:t+n

▶ BUT both require more compute/memory (can be prohibitively
too slow), and must wait n steps before learning update occurs

DS-GA 3001 007 | Lecture 7

Regularisation of Policy Function

A biased policy samples biased data

▶ The policy gradient objective only considers improvement
under observed/sampled data

▶ But the policy is what drives the sampling of data, so the agent
gets easily trapped in local optima, which perpetuate biases

▶ Entropy needs be increased (encourage exploration) without
causing breakage due to widly different policies (instability)

▶ Many variants from original A3C method have been developed
to address the bias-variance tradeoff of actor-critic RL

▶ For example to prevent instability and perpetuating biases, the
policy can be regularised to not change too much

DS-GA 3001 007 | Lecture 7

Regularisation of Policy Function
Trust Region Policy Optimization (TRPO)

▶ Prevent instability by regularizing J(θ) to limit the difference
between subsequent policies (= limit speed of exploration)

▶ The difference between two probability distributions/densities
is the Kullback-Leibler divergence DKL:

DKL(πold||πθ) =
∑
a

πold(a|s) log
πθ(a|s)
πold(a|s)

▶ TRPO defines a ”trust-region” by maximizing this objective:

∇θ

[
E
πold

(
δ

πθ(a|s)
πold(a|s)

)
− η DKL(πθ||πold)

]
▶ TRPO is especially useful for KT from good starting policies

Schulman et al. (2015)DS-GA 3001 007 | Lecture 7

Regularisation of Policy Function
Proximal Policy Optimization (PPO)
▶ PPO defines a trust region by regularizing the objective with a

clipped probability ratio (similar to TRPO but simpler)

∇θ

[
E
πold

(
δ clip

(
πθ(a|s)
πold(a|s)

, 1 − ξ, 1 + ξ

))]

Schulman et al. (2017)DS-GA 3001 007 | Lecture 7

Regularisation of Policy Function
Proximal Policy Optimization (PPO)
▶ PPO defines trust region by regularizing objective with clipped

probability ratio (same results as TRPO but simpler algorithm)

∇θ

[
E
πold

(
δ clip

(
πθ(a|s)
πold(a|s)

, 1 − ξ, 1 + ξ

))]
▶ Benchmark of PPO performance on MuJoCo Gym environments

Schulman et al. (2017)DS-GA 3001 007 | Lecture 7

Example: Moving a Robot with PPO

Proximal Policy Optimization (PPO)

For more details: https://openai.com/blog/openai-baselines-ppo

DS-GA 3001 007 | Lecture 7

https://openai.com/blog/openai-baselines-ppo

Example: Moving a Robot with PPO

Proximal Policy Optimization (PPO)

(Source: DeepMind (2017))

DS-GA 3001 007 | Lecture 7

https://youtu.be/faDKMMwOS2Q?t=5

Reinforcement Learning in
Continuous Action Space

DS-GA 3001 007 | Lecture 7

Policy Gradient for Continous Action Space

Policy Gradient easily extends to continous actions
▶ Instead of learning probabilities for discrete actions, RL can

learn a statistics of continuous action-probability densities

▶ For example, an action can be chosen from a Gaussian density:

πθ(a|s) ∼ N
(
µθ(s), σ2

θ

)
∀σ† : ∇θJ(θ) = E (δ∇θ log πθ(a|st)) ≈ δ

a− µθ(s)
σ2 ∇µθ(s)

▶ Sampling actions from
a probability density
guarantees exploration

† In this example σ is predefinedDS-GA 3001 007 | Lecture 7

Practice: CACLA algorithms

Continuous Actor-Critic Learning Automaton (CACLA) samples
actions from a parameterized probability density πθ ∼ N (µθ, σ

2
θ),

udpated from the gradient of vw at every step, in any state s

Initialize w, θ, and s, arbitrarily

Loop forever:

Take a from s following N
(
µθ(s), σ2

θ

)
, observe rt+1 and s′

δ = rt+1 + γ vw(st+1)− vw(st)

wt+1 = wt − α1 δ∇wvw(st)

If ∗ δ > 0 : θ = θ + α2 δ∇θ log πθ(a|st)

s = s′

* The original CACLA algorithm (2007) updated actor iff sampled at increases value

DS-GA 3001 007 | Lecture 7

Practice: DDPG algorithms

Deep Deterministic Policy Gradient (DDPG) generalizes CACLA and
DQN by sampling actions from a probability density πθ ∼ N (µθ, σ

2)

udpated directly from the gradient of qw learned by deep learning

Initialize w, θ, and s, arbitrarily

Loop forever:

Take a from s following N (µθ(s), σ2), observe rt+1 and s′

wt+1 = wt − α1 (rt+1 + γ qw (st+1, µθ (st+1))− qw (st, a))∇wqw(st, a)

θ = θ + α2 ∇θqt (st, µθ(st))

Store past transitions in a Replay Buffer

s = s′

Periodically:

Sample mini-batches from the Experience Replay Buffer

Loop through these mini-batches to further update w and θ

* Lillicrap, Silver et al. (2016)DS-GA 3001 007 | Lecture 7

Thank you!

DS-GA 3001 007 | Lecture 7

