DS-GA 3001 007 | Lecture 7

Reinforcement Learning

Jeremy Curuksu, PhD
NYU Center for Data Science
jeremy.cur@nyu.edu

March 23, 2023

DS-GA 3001 RL Curriculum

Reinforcement Learning:

| 2

vV VvV V.V vV vV VY

Introduction to Reinforcement Learning
Multi-armed Bandit

Dynamic Programming on Markov Decision Process
Model-free Reinforcement Learning

Value Function Approximation (Deep RL)

Policy Function Approximation (Actor-Critic)
Planning from a Model of the Environment
Examples of Industrial Applications

Advanced Topics and Development Platforms

DS-GA 3001 007 | Lecture 7

Reinforcement Learning

Lecture 5: Value Function Approximation

» Categories of Functions in Reinforcement Learning
» Approximation of State-Update and Value Functions
» Deep Reinforcement Learning

Today: Policy Function Approximation

» Policy Gradient Reinforcement Learning
» Advanced Sampling of Policy Gradient
» Reinforcement Learning in Continuous Action Space

DS-GA 3001 007 | Lecture 7

RL Functions and Approximations

» All key components of an RL agent are functions

> State update functions map observations to states

> Value functions map states to values

> Policy functions map states to actions

> Models map states and actions to next states and rewards

» Functions can be parameterized and approximated by linear or
non-linear gradient methods e.g., Deep Learning

»> A parameterized policy function is called an "actor” function.
Policies are action-selection functions which can be derived
determistically from a value function (example: e-greedy soft
updates), but more generally they can be parameterized

» Challenge: Supervised learning assumptions are often violated

DS-GA 3001 007 | Lecture 7

Policy Gradient
Reinforcement Learning

Policy-based RL

Predict optimal action using a Deep Neural Network

» Replace e-greedy function by an ANN model

Neural
Network

qw(s, a) = ANN,,(s)

Neural
L max Network

q(s,a3) p(s,as)

n(a*|s) = argmax, q(s, @) mg(a*|s) = ANNg(s), 0 < V())

DS-GA 3001007 | Lecture 7

Policy-based RL

Optimize a Parametric Policy Function
me(als) ~ p(als, 0)
» The function can be a linear combination of features, often
with a soft-max to define action-probabilities normalizing to 1
eGT(z)(s,a)
Zk e9T¢(Svak)

» Parameters 6 can be updated incrementally by optimizing any
objective measure of performance J(6):

mo(als) =

6 ~ arg max J(6)
0
» Gradient ascent converges to global optimum if J(6) is known

DS-GA 3001 007 | Lecture 7

Policy-based RL

Model-free

Value olicy

P
Actor
Critic
Value-based Policy-based
Model-based

Categories
of RL agents:

Model-based: Use a model to learn policy and/or value function (lecture 3, 8)
Model-free: Learn policy and/or value function without model (lecture 4-5)
Value-based: Learn value function, not policy function (lectures 4-5)

Policy-based: Learn policy function, not value function (today)

vV VvV VY VvYyYy

Actor-Critic: Learn policy and value functions (today)

DS-GA 3001007 | Lecture 7

Model-, Value-, or Policy-based RL ?

» Model-based RL:

v Learns ‘all there is to know’ from the data

v Very well understood method (supervised learning)

x Objective captures irrelevant information

x May focus compute/capacity on irrelevant details

x Deriving a policy from a model (planning) is non-trivial

» Value-based RL:

v Focus compute/capacity on how actions affect reward
v Relatively well-understood (similar to regression)
x May still focus compute/capacity on irrelevant details

» Policy-based RL:

v Direct search of optimal policy = true objective of RL
x Ignores all other learnable knowledge

DS-GA 3001 007 | Lecture 7

Pros & Cons of Policy-based RL

» Strengths:
v~ Focus on true objective of RL. Sometimes policies are
simple while values and models are complex

v Can learn high-dimensional or continuous action policies

v Can learn stochastic (= probabilistic) policies

v Can learn appropriate levels of exploration autonomously
(no need to manually define an e-exploration schedule)

» Limitations:
x lgnores all other learnable knowledge so may not
efficiently use the available data

x Easily trapped in local optima (actor is what creates data)
x May not generalize well when environment changes

DS-GA 3001 007 | Lecture 7

Policy Optimization using Gradient

Define Policy’s Objective Measure of Quality

» Ex 1 (Episodic Case): Maximize expected return in so:
Jo(0) = E(GHSO) = Vay (So)

» Ex 2 (Continuous Case): Maximize average return across states:
Jog(0) = E(6ls) = 3 ()

Update policy parameters by stochastic gradient ascent

-
DS-GA 3001007 | Lecture 7

Policy Optimization using Gradient

Update policy parameters by stochastic gradient ascent

» To find a maximum of J(6), define the gradient of J(#) and move
0 in the direction of positive gradient at every step:

9J(8)
004

Vol(0) =

9J(6)
90,

01 = 0t + Vg J(0)

» Some methods do not use gradient (out of scope):
> Hill climbing
> Genetic algorithms

DS-GA 3001 007 | Lecture 7

Policy Optimization using Gradient

How can the agent learn
Vg](@) = Vy EM(GJS)
?

Sample what? Compute what?

DS-GA 3001 007 | Lecture 7

Policy Gradient Theorem

Theorem's Proof
Vo)(8) = Vo E(Gils)

=Vo > _u(s) > _m(als)Gy
= us) Z Ve mo(als) Gy

\Y als
=32 Sl =
S

o (G Vo 7r9(0|s)

7T9(CI‘S)) = TIE(Gt Vo |0gﬂ'9(a|5))

e

» In plain english: Gradient of the expected value of G; under
equals the expected value of G; weighted by gradient of log 7y

DS-GA 3001 007 | Lecture 7

Policy Gradient Theorem

Vv differentiable policy 7y, the gradient of] = E,,(G¢|s) is:

V@ﬂ'g(a|5)
VoE(G¢|S) = E |G ————— | = E(G;Vy | als
6@(tls) m(t mo(als) m(t Vo log me(als))
Theorem'’s Implications

» The gradient of J(9) can be sampled because it is equal to the
expected value of some known quantities (G, 7, and V my)

» Gradient updates of 7y do not involve derivatives of the state
distribution thus are agnostic to detailed dynamics of the MDP

DS-GA 3001 007 | Lecture 7

Practice: MC Policy Gradient (REINFORCE)

REINFORCE update 74(als) using the policy gradient computed over
complete episodes, with no model of the environment

Initialize 6 arbitrarily
Loop forever:
Initialize so
Experience an episode (So, G0, I, S1, @1, I2, ..., r7) following my:
Loop for each step t of episode:
G=repr+yrtya+ oo+ Fpagr

0 =0+ aGVglog(mg(als))

DS-GA 3001 007 | Lecture 7

Advanced Sampling of
Policy Gradient

Advanced Sampling of the Gradient Vv, J(0)

» Variance can be reduced by adding a baseline to the MC target:
Ot11 = 6t + (Gt — v (St)) Vo log mg(alst)

» Itis called the advantage of following 7, relative to baseline:
Otiq = 0t + a (G (St,0a) — Vo (St)) Vg log mg(alst)

» ATD target can be used to learn at every step:
Ot+1 = 0t + a (Fega + 7 Ve (St41) — Vr(St)) Vi log mo(alst)

» Value function approximation refines (critics) the gradient:

Otr1 = Ot + a (Fea + 7 Vw(St41) — Vw(St)) Vo log mo(alst)

DS-GA 3001007 | Lecture 7

Generalized Policy Iteration

All RL methods are Generalized Policy Iteration methods

Control
Improve Policy

Prediction
Evaluate Policy

DS-GA 3001 007 | Lecture 7

Practice: A3C Actor-Critic

Asynchronous Advantage Actor-Critic (A3C) updates 7, using the
policy gradient computed from v,, at every step, in any state s

Initialize w, 6, and s, arbitrarily
Loop forever:
Take a from s following my(a|s), observe ri 4 and s’

& = rt41 + v Vw(St+1) — Vw(St) [TD-error = Advantage]

Wipq = Wt — a1 6 ViV (St) [Update of Critic]
0 =04 ax0Vglog 7r9(a|St) [Update of Actor]
s=5s'

DS-GA 3001 007 | Lecture 7

Bias-variance tradeoff in A3C

Update policy gradient from multi-step TD error

» The full return Gt = (req + v e + -..) has high variance
» The TD target rq + v Vw(St1) has high bias

» A useful middle ground is to define TD error with n-step return:
Gttrn = Ftr + Yr2 + o + 7" Fepn + 7"V (Stan)

» Or to define TD error with \-returns as in TD()\):

oo

G} =(1-2))_ A" Gten

n=1

» BUT both require more compute/memory (can be prohibitively
too slow), and must wait n steps before learning update occurs

DS-GA 3001 007 | Lecture 7

Regularisation of Policy Function

A biased policy samples biased data

» The policy gradient objective only considers improvement
under observed/sampled data

» But the policy is what drives the sampling of data, so the agent
gets easily trapped in local optima, which perpetuate biases

» Entropy needs be increased (encourage exploration) without
causing breakage due to widly different policies (instability)

» Many variants from original A3C method have been developed
to address the bias-variance tradeoff of actor-critic RL

» For example to prevent instability and perpetuating biases, the
policy can be regularised to not change too much

DS-GA 3001 007 | Lecture 7

Regularisation of Policy Function

Trust Region Policy Optimization (TRPO)

» Prevent instability by regularizing J(0) to limit the difference
between subsequent policies (= limit speed of exploration)

» The difference between two probability distributions/densities
is the Kullback-Leibler divergence Dy;:

mo(als)
Dy (motd|| o) Tod(als o
o || Z o ‘ Wold(a|s)

» TRPO defines a "trust-region” by maximizing this objective:

als
Ve [WIE%d (6 mo(al3) > — 1 Dy (o || otd)

7"'old(a|s)

» TRPO is especially useful for KT from good starting policies

DS-GA 3001 007 | Lecture 7 Schulman et al. (2015)

Regularisation of Policy Function

Proximal Policy Optimization (PPO)

» PPO defines a trust region by regularizing the objective with a
clipped probability ratio (similar to TRPO but simpler)

WA C--RRED)]

- 8>0 5<0
1-¢1

CLIP
J

0 11+¢ e

DS-GA 3001007 | Lecture 7 Schulman et al. (2017)

Regularisation of Policy Function

Proximal Policy Optimization (PPO)

» PPO defines trust region by regularizing objective with clipped
probability ratio (same results as TRPO but simpler algorithm)

o |8 (ol -6 1))

» Benchmark of PPO performance on MujoCo Gym environments

nnnnnnnn » Hoppect

s
WM

w |
Y/ R4

,,,,,,,,,

Example: Moving a Robot with PPO

Proximal Policy Optimization (PPO)

For more details: https://openai.com/blog/openai-baselines-ppo

DS-GA 3001007 | Lecture 7

https://openai.com/blog/openai-baselines-ppo

Example: Moving a Robot with PPO

Proximal Policy Optimization (PPO)

(Source: DeepMind (2017))

DS-GA 3001007 | Lecture 7

https://youtu.be/faDKMMwOS2Q?t=5

Reinforcement Learning in
Continuous Action Space

Policy Gradient for Continous Action Space

Policy Gradient easily extends to continous actions

> Instead of learning probabilities for discrete actions, RL can
learn a statistics of continuous action-probability densities

» For example, an action can be chosen from a Gaussian density:

mo(als) ~ N (uo(s), o5)

a —
Vol : Ve)(8) = E (5 Ve logme(alst)) ~ 06— Vho(s)

» Sampling actions from I\

a probability density |
guarantees exploration || T H

:::::::::::

Practice: CACLA algorithms

Continuous Actor-Critic Learning Automaton (CACLA) samples
actions from a parameterized probability density my ~ A (19, 03),
udpated from the gradient of v,, at every step, in any state s

Initialize w, 6, and s, arbitrarily
Loop forever:
Take a from s following NV (119 (s), 02), observe ry; and s’
8 = reya + v Vw(St1) — Vw(St)
Wipq = Wt — a1 6 ViV (St)
If*6 >0: 0 =0+ azd Vg logmg(alst)

s=5s'

* The original CACLA algorithm (2007) updated actor iff sampled a; increases value

DS-GA 3001 007 | Lecture 7

Practice: DDPG algorithms

Deep Deterministic Policy Gradient (DDPG) generalizes CACLA and
DQN by sampling actions from a probability density 7y ~ A (ug, 0?)
udpated directly from the gradient of g, learned by deep learning

Initialize w, 6, and s, arbitrarily
Loop forever:
Take a from s following N'(ug(s), o2), observe rii4 and s’
Wit = Wi — 0 (Nt + 5 Gw (St1, o (St+1)) — Gw (St, @) Vwqw(st, a)
0 =0+ a2 Vaqt (St, ue(St))
Store past transitions in a Replay Buffer
s=¢s
Periodically:
Sample mini-batches from the Experience Replay Buffer

Loop through these mini-batches to further update w and

DS-GA 3001 007 | Lecture 7 * Lillicrap, Silver et al. (2016)

Thank you!

