DS-GA 3001 007 | Lecture 4

Reinforcement Learning

Jeremy Curuksu, PhD
NYU Center for Data Science
jeremy.cur@nyu.edu

February 17, 2023

DS-GA 3001 RL Curriculum

Reinforcement Learning:

| 2

vV VvV V.V vV vV VY

Introduction to Reinforcement Learning
Multi-armed Bandit

Dynamic Programming on Markov Decision Process
Model-free Reinforcement Learning

Value Function Approximation (Deep RL)

Policy Function Approximation (Actor-Critic)
Planning from a Model of the Environment
Examples of Industrial Applications

Advanced Topics and Development Platforms

DS-GA 3001 007 | Lecture 4

Model free Reinforcement Learning

Last week:

» Markov Decision Process
» Value Functions and Bellman Equations
» Dynamic Programming

Today:
» Monte Carlo and Temporal Difference
» Sample-based Prediction and Control
» Off-policy Learning

DS-GA 3001 007 | Lecture 4

Generalization to Model-free RL

Sampled-based Reinforcement Learning

» Dynamic Programming requires a perfect model of
state transitions and rewards to carry out a one-step
look-ahead full-width backup at each iteration

» Problem: In most cases, a perfect MDP model of
state transitions and rewards is not available

» Solution: Sample the state-action space

DS-GA 3001 007 | Lecture 4

Monte Carlo and Temporal
Difference

Sampled-based RL

Use sample of experience to learn without model

» RL goal is to learn v, from series of experience under policy =

Va(s) = E(Gils)

» Instead of updating true expected return, sample its average:

k=0

Vea(St) = Ve(St) + ot (Z Pk — Vt(st)>

» This requires sampling an entire episode for each update

» This is called Monte-Carlo policy evaluation

DS-GA 3001 007 | Lecture 4

Example of MC Policy Evaluation

Case Study: Blackjack

Goal: Draw cards so that their sum > dealer’'s sum and < 21

Environment: [observation:][reward: 0 J
.. 13, 10, Fal done: Fal
> Initial state: 2 cards for player, (alse) done: False
2 cards for dealer i
Environment
» Face cards = 10, Ace =10r 11 RL Agent T

> Player requests cards 1 by 1

» When the player exits, the
dealer draws cards for itself
until its sum exceeds 17

States:
> Agent’s cards (sum of points)

> Dealer’s showing card
» Boolean that represents whether the agent has a usable ace

DS-GA 3001 007 | Lecture 4

Example of MC Policy Evaluation

Case Study: Blackjack

Goal: Draw cards so that their sum > dealer’'s sum and < 21

Actions:

| 4
>

Draw another card (automatically draw if sum < 12)
Stop and terminate

Rewards:

>

vVvyyy

0 when agent or dealer draw cards

-1 (lose) if agent’s sum > 21

-1(lose) if agent stops and agent’s sum < dealer's sum
+1 (win) if agent stops and agent’s sum > dealer’s sum
No discounting

DS-GA 3001 007 | Lecture 4

Example of MC Policy Evaluation

After 10,000 episodes After 500,000 episodes

Usable
ace

No
usable
ace

DS-GA 3001 007 | Lecture 4

Temporal Difference Learning

Sample Bellman equations instead of full episodes

» DP estimates values of states based on estimates of values of
successor states, without waiting for a final outcome

V() = E(GelS) = E(Fees +7Va(Sts) |5)

VS, Via(s) = Y _m(a|s)Y_p(s',rls.a)[r +7 vi(s)]

a s',r

» Instead of updating true expected DP target, sample it:
Vepa(St) = Ve(St) + at (Feaa + 7 Ve(Sta) — Vi(St))

» This does not require sampling entire episodes for each update

» This is called Temporal Difference policy evaluation

DS-GA 3001 007 | Lecture 4

Bias-variance tradeoff of MC vs. TD

MC samples to learn v, online from entire episodes:

» MC must wait until end of episode before return is known

» MC can only learn from complete sequences

» MC only works for episodic (terminating) environments

» Return G; = (rt;, + vt + ...) is an unbiased estimate of v, (s;)
...but has high variance

TD samples and bootstraps to learn v, online:
» TD learns after every step, before knowing the final outcome
» TD can learn from incomplete sequences
» TD works in continuing (non-terminating) environments
> TD target ri., + v V(St;+) is a biased estimate of v (s;)

...but has lower variance
DS-GA 3001 007 | Lecture 4

Case Study: Drive Home*

An episode driving back home from the office...

State Elapsed Predicted Predicted
Time (min) Timeto Go Total Time
Leave office o] 30 30
Reach car, raining 5 35 40
Exit highway 20 15 35
Behind truck 30 10 40
Home street 40 3 43
Arrive home 43 o] 43

* Sutton and Barto, 1998
DS-GA 3001 007 | Lecture 4

Case Study: Drive Home*

An episode with Monte Carlo vs. Temporal Difference

45
actual outcome

. 40
Predicted
total
travel 35
time

30

actual
outcome

T T T T T T
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

Monte Carlo

* Sutton and Barto, 1998

T T T T T T
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

Temporal Difference

DS-GA 3001 007 | Lecture 4

Convergence of MCvs. TD

MC and TD both converge to the same values as N — oo,
but what about finite experience?

Case study: 2 states A and B, no discounting, N = 8 episodes:

A,othen B, 0

B, 1

B, 1

B, 1

B, 1 What are v(A) and v(B)?
B, 1

B, 1

B, O

DS-GA 3001 007 | Lecture 4

Convergence of MCvs. TD

MC and TD both converge to the same values as N — oo,
but what about finite experience?

Case study: 2 states A and B, no discounting, N = 8 episodes:

A,o0thenB, 0
B, 1
B, 1
B, 1
B, 1
B, 1
B, 1
B, O

DS-GA 3001 007 | Lecture 4

Convergence of MCvs. TD

MC and TD both converge to the same values as N — oo,
but what about finite experience?

» Repeatedly sampling a finite number of episodes is equivalent
to sampling from an empirical model

» MC converges to best mean-squared fit for observed returns:
. q 2
Vv(s) — argmin Z (G't — v(s{))
it
MC does not exploit sequential dependence of states

» TD converges to solution of max likelihood Markov model:
v(s) = Y _P(s'rs)[r+v(s')]
s',r

TD exploits the Markov property

DS-GA 3001 007 | Lecture 4

Convergence of MCvs. TD

MC and TD both converge to the same values as N — oo,
but what about finite experience?

» Repeatedly sampling a finite number of episodes is equivalent
to sampling from an empirical model

» MC converges to best mean-squared fit for observed returns:
Vv(s) — argmin Z (G't — v(si))z
AB case study: Vv(A)=o0, v(B,)J: 0.75
» TD converges to solution of max likelihood Markov model:
v(s) = > _P(s’,r|s)[r+v(s)]
s'r

AB case study: p(B,0|A)=1, v(B)=0.75 = V(A)=0.75

DS-GA 3001 007 | Lecture 4

DP vs. MCvs. TD

Dynamic Programming Monte Carlo Temporal Difference

Bootstrapping: update involves an estimate

DP bootstraps MC does not bootstrap TD bootstraps

Sampling: update samples an expectation

DP does not sample MC samples TD samples

DS-GA 3001 007 | Lecture 4

n-step TD and TD()\)

n-step TD: Temporal Difference TD()\): Weighted sum of
learning from n-step updates all possible n-step updates
Gttrn = g1 + Yta2 + oo 9" Feyn +9"V(St4n) G =(1—N) Z A" Grgyn
n=1
1-step TD co-step TD RMSE over first 10 episodes in random walk
and TD(0) 2-stepTD 3-step TD n-step TD and Monte Carlo
!
O

O+—e—0O——0
o—O—e—D—e—0

O—eOe-—O—s
RMSE

o——e—+—e—D+—0o—0

O

O ---

DS-GA 3001 007 | Lecture 4

Policy Evaluation Method Space

Width of search vs. Depth of search

Dynamic Exhaustri]ve
programming searcl

full

backups
Width
of
updates
sample Monte Carlo
backups Temporal-
difference
learning
shallow deep ¢
backups Depth backups |
of
updates

DS-GA 3001 007 | Lecture 4

Sample-based Control

Generalized Policy Iteration

All RL methods are Generalized Policy Iteration methods

Control:
Improve Policy T — argmax ()
(with exploration)
v T

Prediction:

V7 Ve Evaluate Policy

DS-GA 3001 007 | Lecture 4

Generalized Policy Iteration

All RL methods are Generalized Policy Iteration methods

Control:
Improve Policy 7 = argmax (q)
(with exploration)
q T

Prediction:

47 n Evaluate Policy

DS-GA 3001 007 | Lecture 4

Monte Carlo Policy Iteration

Find a better policy 7’ given estimated value of =

» Recall the Policy Improvement theorem:

vV, Vs: n'(s) = argmaxq_(s,a) is better or same as 7(s)
a

> Policy improvements over v(s) require a model —> use q(s, a)
» Greedy policy improvements do not explore = use e-greedy

> c-greedy is GLIE: "Greedy in the Limit with Infinite Exploration”
i.e., the policy is guaranteed to converge to a greedy policy if
all state-action pairs are explored infinitely many times

» Theorem: GLIE Monte-Carlo control converges to the optimal
action-value function q(s,a) — q.(s,a)

DS-GA 3001 007 | Lecture 4

Practice: Monte Carlo RL Algorithm

MC RL computes (s, a) as moving average over complete episodes,
learning “episode by episode” with no model of the environment

Initialize q(s, a) and = (s) arbitrarily
Loop forever:
Initialize so
Experience an episode (So, 0o, 1, S1, 1, I2, ..., ') following 7:
Loop for each step t of episode:
G=repr+ 72+ o+ fepgr
q(s.a) = q(s,a) + o (G — q(s, a))
Update = at s given q(s, a) by e-greedy soft update

DS-GA 3001 007 | Lecture 4

Practice: c-Greedy Soft Policy

Select random action with probability «
Select greedy action with probability 1 — ¢

Loop forallains:

a* = argmax(q(s, a)
a

|Tfs)| fora # a*

DS-GA 3001 007 | Lecture 4

Temporal Difference Policy Iteration

Update Action-Value Functions with "SARSA":
» Apply TD(0) to g(s, a):
Q(S, G) = Q(S, G) + o (r + q(slv a/) - Q(S, G))

» Update 7(s) given q(s, a) by e-greedy soft update

» Same as MC algorithm but instead use TD(0)

to update q(s, a) () s'

» Compared to MC, TD can learn online at every
step, it can learn from incomplete episodes,
and it has lower variance Q-

DS-GA 3001 007 | Lecture 4

Practice: SARSA TD Algorithm

SARSA TD computes q(s, a) at every step based on previous g-value
estimates (bootstrapping), with no model of the environment

Initialize q(s, a) and =(s) arbitrarily
Initialize s
Select a from s following =(s)
Loop forever: (or for each step t of an episode)
Take a, observe rt;4 and s’
Select a’ from s’ following 7(s’)
q(s.0) = q(5,0) + o (reea +7q(s', @) — q(s, @)
Update 7 at s given q(s, a) by e-greedy soft update

s=s'" a=a

DS-GA 3001 007 | Lecture 4

Off policy learning

On-policy vs. Off-policy RL

On-policy learning

» “Learn on the job”: Learn about policy = from experience
sampled from 7 (that is, by following)

Off-policy learning

> “Look over the agent’s shoulder”: Learn about a target policy =
from experience sampled from a behaviour policy b

» Evaluate = by computing v.(s) or g (s, a) while following b

(50a007r1a51aa17r27"'7rT) ~ b
» Motivations:

» Learn about optimal policy while following exploratory policy
> Re-use experience from old policies (Experience Replay)

» Learn from observing humans or other agents

» Learn about multiple policies while following one policy

DS-GA 3001 007 | Lecture 4

Off-policy Q-learning

Q-learning estimates the value of the greedy policy:
e44(S, @) = qe(St, ar) + o (rt+1 o 77 (eSS qe(St+1,a’) — Ge(st, at))

» Q-learning systematically updates the greedy policy whatever
the behavior policy followed is, thus keeping learning focused
on greedy actions even when the agent explores other actions

» Theorem: Q-learning control converges to the optimal
action-value function, g — g., as long as we take each action
in each state infinitely often (no need for greedy behavior)

DS-GA 3001 007 | Lecture 4

Practice: Q-learning TD Algorithm

Q-learning computes q(s, a) at every step using Bellman optimality
equation (bootstrapping), with no model of the environment

Initialize q(s, a) and b(s) arbitrarily
Initialize s
Loop forever: (or for each step t of an episode)

Select and take a from s following b(s), observe rt4, and s’
4(5.0) = (5.0) + @ (s + 7 mexa(s', @) — 4(5,0))

Update b at s given q(s, a) by e-greedy soft update

s=5s'

DS-GA 3001 007 | Lecture 4

SARSA vs. Q-learning Example

Cliff walking Gridworld

> Comparison of performance of on-policy (Sarsa) and off-policy (Q-learning)
methods with e-greedy action selection e = 0.1

Sarsa r=-1__ Safe path
Accumulated 25 AN »
Reward per N
Episode | /\/\/\/\/J Optlmal path
-learnin i
a5 Q J S| The Cliff G
o 100 200 300 400 500 R=-100

Episode

DS-GA 3001 007 | Lecture 4

Upward Bias of Q-learning

Q-learning uses the same Q-function to select and
evaluate actions, leading to a self-fulfilling prophecy

» TD target ri, +ymaxq(s’,a’) is a biased sample of g.(s, a)
al
»> Same Q-value estimate used to select @’ and evaluate q(s’, a’)

maxq(s’,a’) = q(s’,argmaxq(s’,a’))
a’ a’

» This tends to overselect overestimated values and underselect
underestimated values, perpetuating an upward bias
» Solution: Decouple functions used for selection vs. evaluation

» This is called Double Q-learning

DS-GA 3001 007 | Lecture 4

Double Q-learning

Double Q-learning uses independent Q-functions to
select vs. evaluate actions

» Store two functions g, and g.:

&1(5,6) = G5,) + (r (5", arg max Ga(s)= (S, a))
a/

g2(s,a) = gx(s,a)+a (rt+1 +7qa(s',argmax gq(s’,a’)) — qa(s, a)
a/

» At each step:
> Update either g, or g, (e.g., select each with p = 0.5)
> Act by e-greedy soft update using g, or g, (or g, + g»)

DS-GA 3001 007 | Lecture 4

Double Q-learning Example

The Roulette

DS-GA 3001007 | Lecture 4

Double Q-learning Example

Double Q-learning outperforms Q-learning by reducing
the overoptimism due to value estimation errors

» Comparison of Double Q-learning vs. Q-learning on the roulette case study

Expected Profit Expected Profit
$40F $40
Q-learning _‘_Q-lea\rnin_g
$20 1 $20 7
¢l Actul | go| _Double Qleaming
171 17100000 171 17100000

Number of Updates Number of Updates

van Hasselt, 2010

DS-GA 3001 007 | Lecture 4

Double Q-learning Example

Double Q-learning outperforms Q-learning by reducing
the overoptimism due to value estimation errors

» Comparison of DDQN performance vs. DQN on 57 Atari video games

Observation le aQr-n in g Action

— &
&

van Hasselt, Silver, 2015

DS-GA 3001 007 | Lecture 4

Today’s Takeaways

MC and TD can learn optimal policies without model, by
sampling expected returns across the state-action space

» MC samples entire episodes and updates values one episode
atatime. It is unbiased but can have large variance because
episodes can be very different from one another

» TD bootstraps to update values at every step, shifting each
estimate toward the estimate that immediately follows it

» When sampling is finite, TD is more stable than MC but can be
more biased toward wrong results

» Q-learning is an off-policy TD algorithm which focuses on
learning the optimal policy while sampling other policies

DS-GA 3001 007 | Lecture 4

Thank you!

