
DS-GA 3001 007 | Lecture 3
Reinforcement Learning

Jeremy Curuksu, PhD
NYU Center for Data Science
jeremy.cur@nyu.edu

July 8, 2023

DS-GA 3001 RL Curriculum

Reinforcement Learning:
▶ Introduction to Reinforcement Learning
▶ Multi-armed Bandit
▶ Dynamic Programming on Markov Decision Process
▶ Model-free Reinforcement Learning
▶ Value Function Approximation (Deep RL)
▶ Policy Function Approximation (Actor-Critic)
▶ Planning from a Model of the Environment
▶ Examples of Industrial Applications
▶ Advanced Topics and Development Platforms

DS-GA 3001 007 | Lecture 3

Dynamic Programming on Markov Decision Process

Last week:
▶ Multi-armed Bandit with action values (ϵ-greedy)
▶ Upper Confidence Bound
▶ Bayesian Bandit

Today:
▶ Markov Decision Process
▶ Value Functions and Bellman Equations
▶ Dynamic Programming

DS-GA 3001 007 | Lecture 3

Generalization to Sequential RL

Sequential Goal-Directed Reinforcement Learning

▶ Bandit problems have only one state, but often the agent must
learn different actions in different situations (states)

▶ Actions in turn may influence subsequent states, and through
those states may influence future rewards

▶ To learn to make good decisions, we need assign credit for
long term consequences to individual actions

DS-GA 3001 007 | Lecture 3

Markov Decision Process

DS-GA 3001 007 | Lecture 3

Markov Decision Process (MDP)

At each step, the agent:
▶ Finds itself in state st (from ot)
▶ Executes action at

▶ Receives reward rt+1

The environment:
▶ Receives action at

▶ Send reward rt+1

▶ Send observation ot+1

DS-GA 3001 007 | Lecture 3

Markov Decision Process (MDP)

An MDP is a mathematical idealization of goal-directed
learning from interaction with an environment

▶ Simulating a MDP produces a sequence of n tuples (trajectory)

(st,at, rt+1, st+1)n = (s0,a0, r1, s1,a1, r2, ..., sn)

▶ The enviroment dynamics is fully characterized by the joint
probability of each possible st+1 and rt+1 as a function of the
immediately preceding state and action, st and at

p(s′, r|s,a) = p(st+1 = s′, rt+1 = r|st = s,at = a)

▶ Markov property: The state must include all information from
past agent–environment interactions that influence the future

p (s, r | st,at) = p (s, r |Ht,at)

DS-GA 3001 007 | Lecture 3

Goals and Rewards

RL applies the reward hypothesis

▶ The purpose of an RL agent is formalized in term of a signal
called reward rt ∈ R passing from the environment to the agent

▶ The agent goal is to maximize the amount of reward it receives

Reward:

rt

Optimal Policy:

π∗ = argmax
a

(∑
rt

)
DS-GA 3001 007 | Lecture 3

Agent goal is to maximize return Gt

Gt is the total accumulated reward from time-step t

▶ Acting in a MDP results in returns Gt that depend on the policy:

Gt = rt+1 + rt+2 + rt+3 + ...+ rT

▶ Gt can be discounted by factor γ ∈ [0, 1] to account for present
value of future rewards (in episodic or continuing tasks)

Gt = rt+1 + γ rt+2 + γ2 rt+3 + ... =
∞∑

k=0

γkrt+1+k

▶ γ < 1 ⇒ Immediate rewards > delayed rewards
▶ γ close to 0 ⇒ ”Myopic” agent
▶ γ close to 1 ⇒ ”Far-sighted” agent

DS-GA 3001 007 | Lecture 3

Value Functions and
Bellman Equations

DS-GA 3001 007 | Lecture 3

State Value Function vπ(s)

Expected return when starting in s and following π

▶ Rewards the agent can expect to receive in the future depend
on what actions it will take. Accordingly, value functions are
defined with respect to particular ways of acting (policies)

∀ s ∈ S, vπ(s)
.
= E

π
(Gt | s)

vπ(s) = E
π
(rt+1 + γ Gt+1 | s)

vπ(s) = E(rt+1 + γ vπ(st+1) | s)

vπ(s) =
∑

a
π(a | s)

∑
s′, r

p(s′, r | s,a) [r + γ vπ(s′)]

▶ vπ(s) indicates how good it is to be in s when following π

DS-GA 3001 007 | Lecture 3

Action Value Function qπ(s,a)

Expected return when selecting a in s and following π

▶ The action value more directly informs on which action to take

∀ s ∈ S, qπ(s,a)
.
= E

π
(Gt | s,a)

qπ(s,a) = E(rt+1 + γ qπ(st+1,at+1) | s,a)

qπ(s,a) =
∑
s′, r

p(s′, r | s,a)
[

r + γ
∑

a′

π(a′ | s′)qπ(s′,a′)

]

▶ qπ(s,a) indicates how good it is to select a in s under π

▶ Note that
∑

a
π(a | s)qπ(s,a) = E (qπ(s,a)) = vπ(s) ∀ s

DS-GA 3001 007 | Lecture 3

Optimal Value Functions v∗ and q∗

Bellman Optimality equations
▶ v∗(s) is the maximum state-value function over all policies:

v∗(s)
.
= max

π
vπ(s)

v∗(s) = max
a

E(rt+1 + γ v∗(st+1) | s,a)

v∗(s) = max
a

∑
s′, r

p(s′, r | s,a) [r + γ v∗(s′)]

▶ q∗(s,a) is the maximum action-value function over all policies:

q∗(s,a)
.
= max

π
qπ(s,a)

q∗(s,a) = E(rt+1 + γ max
a′

q∗(st+1,a′) | s,a)

q∗(s,a) =
∑
s′, r

p(s′, r | s,a)
[

r + γ max
a′

q∗(s′,a′)

]
DS-GA 3001 007 | Lecture 3

Summary of Bellman equations

There are four main Bellman equations:
vπ(s) = E(rt+1 + γ vπ(st+1) | s) (1)

v∗(s) = max
a

E(rt+1 + γ v∗(st+1) | s,a) (2)

qπ(s,a) = E(rt+1 + γ qπ(st+1,at+1) | s,a) (3)

q∗(s,a) = E(rt+1 + γ max
a′

q∗(st+1,a′) | s,a) (4)

▶ There are equivalences between state and action values:

vπ(s) =
∑

a
π(a | s)qπ(s,a) = E (qπ(s,a))

v∗(s) = max
π

vπ(s) = max
a

q∗(s,a)

▶ There can be no policy with higher value than v∗(s)

DS-GA 3001 007 | Lecture 3

Policy Evaluation and Optimization

Bellman equations are used for prediction and control

▶ Prediction: Evaluate a policy by estimating vπ or qπ

π ≥ π′ ⇐⇒ vπ(s) ≥ vπ′(s) ∀ s

▶ Control: Optimize a policy by estimating v∗ or q∗

π∗(s,a) =

1, if a = argmax
a

(q∗(s,a))

0, otherwise

▶ Theorem: For any MDP, there exists an optimal policy π∗ that is
better than or equal to all other policies: π∗ ≥ π, ∀π

▶ There is always at least one deterministic optimal policy for
any MDP. There can be multiple optimal policies

DS-GA 3001 007 | Lecture 3

Solving Bellman Equations

Solving the RL Prediction problem

▶ Bellman equations are linear so can in principle be solved:

V = R + γ PπV

(I − γ Pπ) V = R

V = (I − γ Pπ)−1 R

where: vi = v(si) , ri = Eπ[rt|si] , Pπ
ij =

∑
a π(a | si)p(sj | si,a)

▶ Solving Bellman equations algebraically is akin to exhaustive
search (O(|s|3)), it can be computed only for small problems

▶ This method assumes (1) Markov property, (2) MDP dynamics is
known, (3) we have enough ressources to compute the solution

DS-GA 3001 007 | Lecture 3

Solving Bellman Equations

Solving the RL Prediction problem

▶ Bellman equations are linear so can in principle be solved:

V = (I − γ Pπ)−1 R

Solving the RL Optimization problem

▶ Bellman optimality equations are non-linear thus can’t be
solved directly

▶ RL optimization relies on iterative solution methods
▶ Dynamic Programming (use a model)
▶ Monte-Carlo, Temporal Difference (use samples)

DS-GA 3001 007 | Lecture 3

Dynamic Programming

DS-GA 3001 007 | Lecture 3

Dynamic Programming

▶ DP refers to a collection of algorithms to compute optimal
policies given a complete model of the environment as a MDP

▶ DP is an essential foundation: all RL methods can be viewed as
attempts to achieve the same effect as DP, but with less
computation and without a perfect model of the environment

▶ Key idea of DP is the use of value functions to organize the
search for good policies

▶ All DP methods consist of two parts: policy evaluation and
policy improvement

▶ All DP methods update estimates of the values of states based
on estimates of the values of successor states (bootstrapping)

DS-GA 3001 007 | Lecture 3

Policy Evaluation for a Given Policy

Estimate vπ(s) of a given policy π

▶ Turn the Bellman equation

vπ(s) =
∑

a
π(a | s)

∑
s′, r

p(s′, r | s,a) [r + γ vπ(s′)]

...into an update function:

▶ Initialize v0 e.g., to zero, then iterate:

∀ s , vk+1(s) =
∑

a
π(a | s)

∑
s′, r

p(s′, r | s,a) [r + γ vk(s′)]

▶ Whenever vk+1(s) = vk(s), for all s, we have found vπ

▶ It can be shown that limk→∞ vk = vπ (demonstration out of scope)

DS-GA 3001 007 | Lecture 3

Example of Policy Evaluation

Evaluate the random policy πrandom

▶ Apply random policy πrandom on this 4 × 4 gridworld problem

▶ At each iteration, update value estimate vk(s) of every state s

DS-GA 3001 007 | Lecture 3

Example of Policy Evaluation

DS-GA 3001 007 | Lecture 3

Example of Policy Evaluation

DS-GA 3001 007 | Lecture 3

Policy Improvement

Find a better policy π′ given vπ(s)

1. For a given policy π, compute:

∀ s : π′(s) = argmax
a

q
π
(s,a) = argmax

a

∑
s′, r

p(s′, r | s,a) [r + γ vπ(s′)]

2. Evaluate vπ′(s) as in previous slides (policy evaluation)

3. Repeat

Policy Improvement Theorem:
∀ s, vπ′(s) = maxa qπ(s,a) ≥ vπ(s) =⇒ π′ better or same as π

▶ When vπ′ (s) = vπ(s), vπ′ = maxa qπ′ (s, a). This is the Bellman
optimality equality, thus π′ is optimal.

▶ Thus, if vπ′ (s) ≥ vπ(s), π′ either is an improvement or is optimal

DS-GA 3001 007 | Lecture 3

Generalized Policy Iteration

All RL methods are Generalized Policy Iteration methods

DS-GA 3001 007 | Lecture 3

Practice: Policy Iteration Algorithm
Policy Iteration iterates multiple loops over all states to evaluate v,
then loops over all states once to improve π, then repeats:

Initialize v(s) and π(s) arbitrarily for all s

1. Loop:

∆ = 0
For each s:

vold = v(s)

v(s) =
∑

a π(a | s)
∑

s′, r p(s′ | s, a) [(r(s, a) + γ v(s′)]

∆ = max(∆, |vold − v(s)|)

Stop when ∆ < ξ

2. For each s:

πold(s) = π(s)

π(s) = argmax
a

∑
s′ p(s′ | s, a) [r(s, a) + γ v(s′)]

Stop if πold ⇐⇒ π(s), else go to step 1

DS-GA 3001 007 | Lecture 3

Practice: Value Iteration Algorithm

Policy improvement with truncated policy evaluation

▶ Policy iteration involves policy evaluation at each iteration,
which may itself require multiple loops through all states

▶ Is exact convergence needed, or can we stop sooner? When?

▶ Policy evaluation can be truncated in several ways without
losing the convergence guarantees of policy iteration

▶ A special case is when policy evaluation is stopped after just
one loop (one update of each state). It is equivalent to turning
the Bellman optimality equation into an update function:

vk+1(s) = max
a

∑
s′, r

p(s′, r | s,a) [r + γ vk(s′)]

DS-GA 3001 007 | Lecture 3

Practice: Value Iteration Algorithm

Value Iteration truncates policy evaluation to 1 step between two
(greedy) policy improvement steps while looping over all states

Initialize v(s) arbitrarily for all s

Loop:

∆ = 0

For each s:

vold = v(s)

v(s) = maxa
∑

s′, r p(s′ | s, a) [(r(s, a) + γ v(s′)]

∆ = max(∆, |vold − v(s)|)

Stop when ∆ < ξ

π(s) = argmax
a

∑
s′ p(s′ | s, a) [r(s, a) + γ v(s′)]

DS-GA 3001 007 | Lecture 3

Example of Value Iteration

DS-GA 3001 007 | Lecture 3

Example of Value Iteration

DS-GA 3001 007 | Lecture 3

Asynchronous Dynamic Programming

Update values in any order whatsoever...

▶ DP algorithms described so far loop over all states, but in
practice this is often impossible (e.g., Chess has 1040 states)

▶ Asynchronous DP backs up states in any order, and still
converges if it continues to udpate values of all states

▶ Asynchronous DP makes it possible to focus DP updates onto
parts of the state space that are most relevant to the agent:

▶ Prioritised Sweeping: States with largest Bellman Error:

max |[rt+1 + γv̂(st+1) | s]− v̂(s)|

▶ Real-time DP: Agent’s real experience determines states
to update, while latest values guide its decision making

DS-GA 3001 007 | Lecture 3

Efficiency of Dynamic Programming

DP provides a well defined notion of optimality, but is
often an ideal that AI agents can only approximate

✓ Asynchronous DP often exponentially faster than direct search

✓ ...in particular if agent starts with good initial values or policies

✓ DP is iterative so can learn with limited compute resources

✓ With today’s computers, DP can solve MDPs with millions of
state (assuming a small number of actions)

× In most cases of practical interest, a perfect MDP model of
state transitions and rewards is not available

× In most cases of practical interest, there are far more states
that there could possibly be entries in a look-up table

DS-GA 3001 007 | Lecture 3

Efficiency of Dynamic Programming

DP often suffers from the curse of dimensionality
▶ DP uses full-width backups
▶ Even one full-depth backup can be too expensive
▶ Need to sample (next lecture)

DS-GA 3001 007 | Lecture 3

Thank you!

DS-GA 3001 007 | Lecture 3

