DS-GA 3001 007 | Lecture 3

Reinforcement Learning

Jeremy Curuksu, PhD
NYU Center for Data Science
jeremy.cur@nyu.edu

July 8, 2023

DS-GA 3001 RL Curriculum

Reinforcement Learning:

| 2

vV VvV V.V vV vV VY

Introduction to Reinforcement Learning
Multi-armed Bandit

Dynamic Programming on Markov Decision Process
Model-free Reinforcement Learning

Value Function Approximation (Deep RL)

Policy Function Approximation (Actor-Critic)
Planning from a Model of the Environment
Examples of Industrial Applications

Advanced Topics and Development Platforms

DS-GA 3001 007 | Lecture 3

Dynamic Programming on Markov Decision Process

Last week:

» Multi-armed Bandit with action values (e-greedy)
» Upper Confidence Bound
» Bayesian Bandit

Today:
» Markov Decision Process
» Value Functions and Bellman Equations
» Dynamic Programming

DS-GA 3001 007 | Lecture 3

Generalization to Sequential RL

Sequential Goal-Directed Reinforcement Learning

» Bandit problems have only one state, but often the agent must
learn different actions in different situations (states)

» Actions in turn may influence subsequent states, and through
those states may influence future rewards

» To learn to make good decisions, we need assign credit for
long term consequences to individual actions

DS-GA 3001 007 | Lecture 3

Markov Decision Process

Markov Decision Process (MDP)

[)
—eeeeee
S
State s; Reward 13,4 Action a;
—
At each step, the agent: The environment:

» Finds itself in state s; (from o;) » Receives action a;
» Executes action a; » Send reward r
> Receives reward re > Send observation ot 4

DS-GA 3001 007 | Lecture 3

Markov Decision Process (MDP)

An MDP is a mathematical idealization of goal-directed
learning from interaction with an environment

» Simulating a MDP produces a sequence of n tuples (trajectory)
(St, @t, Mt41, St11), = (So, Ao, 1,51, @1, I, ..., Sn)
» The enviroment dynamics is fully characterized by the joint

probability of each possible s;,, and r., as a function of the
immediately preceding state and action, s; and a;

p(s’,r|s,a) = p(Sti1 =S, 1 = rlsy = s,a; = a)
» Markov property: The state must include all information from
past agent—environment interactions that influence the future

p(s,r|st,ar) = p(s,r|Hear)

DS-GA 3001 007 | Lecture 3

Goals and Rewards

RL applies the reward hypothesis

» The purpose of an RL agent is formalized in term of a signal
called reward r; € R passing from the environment to the agent

» The agent goal is to maximize the amount of reward it receives

Reward:

It

Optimal Policy:

T, = arg max (Z rt>

a

DS-GA 3001 007 | Lecture 3

Agent goal is to maximize return G;

G is the total accumulated reward from time-step t
» Acting in a MDP results in returns G; that depend on the policy:

Gt = rt+1 —+ rt+2 +rt+3 + ... +rT

> G; can be discounted by factor v € [0, 1] to account for present
value of future rewards (in episodic or continuing tasks)

Gt = Fpa + Y leh2 + 7 Fegs + ZV Fttatk

> ~ < 1= Immediate rewards > delayed rewards
> + close to 0 = "Myopic” agent
> ~ close to 1 = "Far-sighted” agent

DS-GA 3001 007 | Lecture 3

Value Functions and
Bellman Equations

State Value Function v, (s)

Expected return when starting in s and following =

» Rewards the agent can expect to receive in the future depend
on what actions it will take. Accordingly, value functions are
defined with respect to particular ways of acting (policies)

Vses, Vo (S) = E(G¢|S)

Vr(S) = E(rt41 + 7 Gt | S)

Vr(S) = E(rt41 + 7 Va(St11) | 5)
Ve(s) =D m(als)y_p(s',r|s.a)[r+7va(s)]

> v.(s) indicates how good it is to be in s when following 7

DS-GA 3001 007 | Lecture 3

Action Value Function g, (s, a)

Expected return when selecting a in s and following =

» The action value more directly informs on which action to take

vseS, g-(s,a) iIE:(Gt|s, a)
4x(S,a) = E(re11 + 7 Gr(St11, Ge14) | S, Q)
Gx(5.0) = Y p(s'.r|s.a) |[r+~ > n(a']|s) qx(s, @)
s/,r a’
» g.(s,a) indicates how good it is to select ain s under =

> Notethat Y _m(a|s)gx(s,a) = E(g(s,a)) = v(s) Vs

DS-GA 3001 007 | Lecture 3

Optimal Value Functions v, and g,

Bellman Optimality equations
> v, (s) is the maximum state-value function over all policies:
V. (S) = max v,(s)

vi(s) = TEE E(re41 + v Va(St41) [5, Q)

V.(s) = max 3" p(s',r[5,a) [r +7V.(s)]
s'r
> q.(s,a) is the maximum action-value function over all policies:
4.(5,0) = maxqx(s,)
G:(5,0) = E(rts1 + 7 maxq.(se4s, @) |5,)
a.(5.0) = - p(s'r15,0) |1+ max .5,

s',r
DS-GA 3001 007 | Lecture 3

Summary of Bellman equations

There are four main Bellman equations:
Vi (S) = E(rtt1 + vV (St4a) |)
Vi(Ss) = max E(res1 + v Vi(St11) | S, Q)
4x(S,a) = E(re41 + v G (St11, Ge14) | S, Q)

G(5,0) = E(ress + 7 maxq.(sess, @) |5,)

» There are equivalences between state and action values:

Va(s) =Y _m(als)gx(s,a) = E(gx(s,a))

a

V.(S) = maxv,(s) = max g.(s,a)

» There can be no policy with higher value than v, (s)

DS-GA 3001 007 | Lecture 3

(1)
(2)
(3)

Policy Evaluation and Optimization

Bellman equations are used for prediction and control
» Prediction: Evaluate a policy by estimating v, or g,

7>7 = v.(s)>vu(s) Vs

» Control: Optimize a policy by estimating v, or g.

a

1, ifa =argmax(q.(s,a))
m«(s,0) =
0, otherwise
» Theorem: For any MDP, there exists an optimal policy =, that is
better than or equal to all other policies: m, > n, Vr

» There is always at least one deterministic optimal policy for
any MDP. There can be multiple optimal policies

DS-GA 3001 007 | Lecture 3

Solving Bellman Equations

Solving the RL Prediction problem
» Bellman equations are linear so can in principle be solved:
V=R+~P"V
(Il—yP")V=R
V=01-~P")'R
where: v; =v(sj), ri=E:[rlsi], P} =>7(alsi)p(sj|si,a)

» Solving Bellman equations algebraically is akin to exhaustive
search (0(|s|?)), it can be computed only for small problems

» This method assumes (1) Markov property, (2) MDP dynamics is
known, (3) we have enough ressources to compute the solution

DS-GA 3001 007 | Lecture 3

Solving Bellman Equations

Solving the RL Prediction problem

» Bellman equations are linear so can in principle be solved:

V=(-~vP")'R

Solving the RL Optimization problem

» Bellman optimality equations are non-linear thus can't be
solved directly

» RL optimization relies on iterative solution methods

» Dynamic Programming (use a model)
> Monte-Carlo, Temporal Difference (use samples)

DS-GA 3001 007 | Lecture 3

Dynamic Programming

Dynamic Programming

» DP refers to a collection of algorithms to compute optimal
policies given a complete model of the environment as a MDP

» DPis an essential foundation: all RL methods can be viewed as
attempts to achieve the same effect as DP, but with less
computation and without a perfect model of the environment

»> Key idea of DP is the use of value functions to organize the
search for good policies

» All DP methods consist of two parts: policy evaluation and
policy improvement

» All DP methods update estimates of the values of states based
on estimates of the values of successor states (bootstrapping)

DS-GA 3001 007 | Lecture 3

Policy Evaluation for a Given Policy

Estimate v, (s) of a given policy =

» Turn the Bellman equation

Ve(s) =Y _m(als) Y p(s'.rls,a)[r +7va(s)]

a s',r

...into an update function:
» Initialize v, e.g., to zero, then iterate:

VS, Via(s) = S m(a]s) S p(ss s, a) Ir + 7 vi(s))]

a s'yr

» Whenever vy ,(s) = vi(s), for all s, we have found v,

» It can be shown that limp_,.o Vx = V. (demonstration out of scope)

DS-GA 3001 007 | Lecture 3

Example of Policy Evaluation

Rt:—].

on all transitions

actions
12 13 [14

Evaluate the random policy 7andom

» Apply random policy mandom ON this 4 x 4 gridworld problem

> At each iteration, update value estimate vg(s) of every state s

DS-GA 3001 007 | Lecture 3

Example of Policy Evaluation

k=0
k=1
k=2

0.0/ 0.0] 0.0] 0.0 bl
0.0/ 0.0 0.0 0.0 bl
0.0 0.0 0_0 0.0 == |1 | T |6—T>
0.0/ 0.0} 0.0 0.0 L e
0.0/-1.0[-1.0/-1.0 — |l
-1.0|-1.0/-1.0]-1.0 ' bl
-1.0|-1.0-1.0]-1.0 Pl
-1.0|-1.0/-1.0] 0.0 | -
0.0[-1.7]-2.0[-2.0 — | |
-1.7]-2.0[-2.0]-2.0 Hid b,
-2.0[-2.0]-2.0]-1.7 Vib| ol
-2.0[-2.0/-1.7] 0.0 +| - -

DS-GA 3001 007 | Lecture 3

random
policy

Example of Policy Evaluation

k=3
k=10
k:OO

0.0|-2.4]-2.9]-3.0 — = |9
-2.4]-2.9]-3.0[-2.9 T bl
2.9]-3.0[-2.9]-2.4 tb| |)
-3.0-2.9-2.4| 0.0 Ll -

0.0]-6.1/-8.4]-9.0 — |- |9
-6.1|-7.7|-8.4|-8.4 Pt e |,
-8.4|-8.4|-7.7]-6.1 RN
-9.0|-8.4|-6.1] 0.0 Ll -] -

0.0|-14.|-20.-22. -
-14.]-18.]-20.|-20. g 1,
-20.|-20.|-18.-14. R
-22.|-20.|-14.| 0.0 L - -

DS-GA 3001 007 | Lecture 3

optimal
policy

Policy Improvement

Find a better policy =’ given v, (s)
1. For a given policy 7, compute:

Vs: 7'(s) = argmaxq_(s,a) = arg mapr(s’, r|s,a)r+~vx(s)]
a a

s'r

2. Evaluate v,/ (s) as in previous slides (policy evaluation)

3. Repeat

Policy Improvement Theorem:
V'S, Vo (S) = maxq G-(S,a) > v.(S) = ' better or same as «

> When v,/ (S) = Vx(S), V» = maxa G, (S, a). This is the Bellman
optimality equality, thus 7’ is optimal.
» Thus, if v/ (s) > vx(S), = either is an improvement or is optimal

DS-GA 3001 007 | Lecture 3

Generalized Policy Iteration

All RL methods are Generalized Policy Iteration methods

Control:
Improve Policy T — argmax ()
(with exploration)
v T

Prediction:

V7 Ve Evaluate Policy

DS-GA 3001 007 | Lecture 3

Practice: Policy Iteration Algorithm

Policy Iteration iterates multiple loops over all states to evaluate v,
then loops over all states once to improve r, then repeats:

Initialize v(s) and = (s) arbitrarily for all s
1. Loop:
A=0
For each s:
Voud = V(8)
v(s) =3 qm(als) Xog , P(S"|s, @) [(r(s,a) + yv(s')]
A = max(A, |Voig — v(s)])
Stop when A < ¢
2. For each s:
Told(S) = 7(s)

n(s) = arg max Xg p(s' |) [1(5, @) + 7 v(s")]

Stop if mog <= 7(s), else go to step 1

DS-GA 3001 007 | Lecture 3

Practice: Value Iteration Algorithm

Policy improvement with truncated policy evaluation

» Policy iteration involves policy evaluation at each iteration,
which may itself require multiple loops through all states

» [s exact convergence needed, or can we stop sooner? When?

» Policy evaluation can be truncated in several ways without
losing the convergence guarantees of policy iteration

» A special case is when policy evaluation is stopped after just
one loop (one update of each state). It is equivalent to turning
the Bellman optimality equation into an update function:

Viea(S) = max > p(s',r[5,a) [+ 7 ve(S")]

s/, r

DS-GA 3001 007 | Lecture 3

Practice: Value Iteration Algorithm

Value Iteration truncates policy evaluation to 1 step between two
(greedy) policy improvement steps while looping over all states

Initialize v(s) arbitrarily for all s
Loop:
A=0
For each s:
Vold = V(S)
v(s) = maxa 3¢ P(s" s, a)[(r(s, a) + yv(s')]
A = max(A, |Voig — V(S)I)
Stop when A < ¢

w(s) = arg(r]nax > p(s'|s,a)[r(s,a) +~yv(s')]

DS-GA 3001 007 | Lecture 3

Example of Value Iteration

random
policy

!

—o [

> [

O] e

— |l

o [[

t

o[-

-1

-1

-1

1
1
1

2| -2

-1

1
1
1
1

-1

0(f0]|J0]|O

0Ofo0o|0]|O

0O(fo0|0]|O

o(fo|j0]|oO

0

222

2|2

DS-GA 3001 007 | Lecture 3

£z
g2

c

(@] U I U I U
= I i T e A R T e A
© AT LR R
O Nk P K
P

(o))

w DI |o DI |F|o RUNENN AN K=
a AN (e [N [AN (e[| AN |||
:VI o [o SACEEAER oo (e
o o [P SN AN AN R O[T |N|P
(o))

—

Q. . = 8

m I ﬂ Ml

S - ~ -

>

LLl

DS-GA 3001 007 | Lecture 3

Asynchronous Dynamic Programming

Update values in any order whatsoever...
» DP algorithms described so far loop over all states, but in
practice this is often impossible (e.g., Chess has 10%° states)

» Asynchronous DP backs up states in any order, and still
converges if it continues to udpate values of all states

» Asynchronous DP makes it possible to focus DP updates onto
parts of the state space that are most relevant to the agent:

> Prioritised Sweeping: States with largest Bellman Error:
max |[rt1 + YV(St41) | S] — V(S)|

> Real-time DP: Agent’s real experience determines states
to update, while latest values guide its decision making

DS-GA 3001 007 | Lecture 3

Efficiency of Dynamic Programming

DP provides a well defined notion of optimality, but is
often an ideal that Al agents can only approximate

v Asynchronous DP often exponentially faster than direct search

v
v
v

...in particular if agent starts with good initial values or policies
DP is iterative so can learn with limited compute resources

With today’s computers, DP can solve MDPs with millions of
state (assuming a small number of actions)

In most cases of practical interest, a perfect MDP model of
state transitions and rewards is not available

In most cases of practical interest, there are far more states
that there could possibly be entries in a look-up table

DS-GA 3001 007 | Lecture 3

Efficiency of Dynamic Programming

oy

DP often suffers from the curse of dimensionality

7\
/\I/ N

1 N 7N
LY /Ny /N

» DP uses full-width backups
» Even one full-depth backup can be too expensive
» Need to sample (next lecture)

DS-GA 3001 007 | Lecture 3

Thank you!

