DS-GA 3001 007 | Lecture 2

Reinforcement Learning

Jeremy Curuksu, PhD
NYU Center for Data Science
jeremy.cur@nyu.edu

February 3, 2023



DS-GA 3001 RL Curriculum

Reinforcement Learning:

| 2

vV VvV V.V vV vV VY

Introduction to Reinforcement Learning
Multi-armed Bandit

Dynamic Programming on Markov Decision Process
Model free RL Prediction and Control

Function Approximation and Deep RL

Parametric Policy Function Optimization

Planning from a RL Model

Examples of Industrial Applications

Advanced Topics and Development Platforms

DS-GA 3001 007 | Lecture 2



Multi-armed Bandit

Last week:
» What is Reinforcement Learning?
» Key components of Reinforcement Learning
» Introduction to the Gym Python library

Today:
» Multi-armed Bandit with action values
» Upper Confidence Bound
» Bayesian Bandit
» Policy Gradient Bandit

DS-GA 3001 007 | Lecture 2



Multi-armed Bandit with
action values



What is Multi-armed Bandit?

DS-GA 3001 007 | Lecture 2



What is Multi-armed Bandit?

The Multi-armed Bandit problem

» Reinforcement learning uses data it receives to
evaluate actions (correct actions are not given),
which creates a need to explore

» A Bandit is a RL problem involving learning to act in
only one situation: 1 state, kR possible actions

» No sequential structure, past actions do not
influence the future: the distribution of reward r;
given a; is identical and independent across time

DS-GA 3001 007 | Lecture 2



What is Multi-armed Bandit?

Example of Multi-armed Bandit problem

Week 1 A e

$$
Week 2 B g
Week 3 ?

Which lever would you pull?

DS-GA 3001 007 | Lecture 2



What is Multi-armed Bandit?

Example of Multi-armed Bandit problem

Week 1 A @
$

Week 2 B

Week 3 B e

Week 4 ?

How about now?

DS-GA 3001 007 | Lecture 2



Exploration vs. Exploitation

Online decision-making involves a fundamental choice:

Exploitation:
Maximize performance using current knowledge

Exploration:
Increase knowledge

» The best strategy may involve short-term sacrifices

» The agent needs gather enough information to make the best
overall decisions

DS-GA 3001 007 | Lecture 2



Multi-armed Bandit Formalism

Problem Statement:

» The agent is faced repeateadly with a
choice among k different actions ("arms”)

» At each step t the agent selects an
action a;

» After each choice it receives a numerical reward r; that
depends on the action selected

» The distribution p(r|a) is fixed but unknown
» Goal is to maximize cumulative reward:
t
>
i=1

DS-GA 3001 007 | Lecture 2



Exploit knowledge with action value

Action value for action a is the expected reward:
t

‘ _ — m N
q(a) =E(rla) = p(rla) x r = lim_ n ;ma

» An estimate is the average of the sampled rewards:

(a) = sum of rewards when a taken prior to t
99 = umber of times a taken priorto t

» With an estimate of g(a), we can select an action:

Greedy policy: a: = arg max q(a)
a

DS-GA 3001 007 | Lecture 2



Incremental implementation

The agent can learn online with a moving average:
t

Fora=a;: qt(a)—%;rila
4:(@) = G:+(a) + 1 (1 — Gt +(0))
Vara: a:(a) = g: +(a)

For non-stationary problems, the agent can track q(a):

:(a) = Gr+(a) + o (re — Gr4(0))

DS-GA 3001 007 | Lecture 2



Explore new actions with c-greedy

The agent must explore to learn g-values

» Greedy selection always exploits current knowledge on
g-values to maximize reward, it never explore

» Alternative: Behave greedily most of the time, but every once
in a while select a random action

> c-greedy algorithm:
> Select random action (explore) with p = ¢
> Select greedy action (exploit) withp =1 — ¢
» When all actions are sampled indefinitely:
Jim qg:(a) = q(a)

DS-GA 3001 007 | Lecture 2



Practice: k-armed Bandit Algorithm

k-armed Bandit both evaluates g(a) and improves a:

Initialize, for a = 1 to k:
q(a) =0
n(a) =0

Loop forever:

a = random action with p = epsilon

or = argmax q(a) with p = 1 - epsilon
Execute a, observe r
n(a) = n(a) + 1

q(a) = q(a) + 1/n(a) * (r - q(a))

DS-GA 3001 007 | Lecture 2



Case Study: 10-armed testbed

k-armed Bandit problem Average performance of c-greedy

Distribution of g(a) vs. action a Average reward over 2000 runs vs. time step
15
s e=0.1 " l. npmo— " 'l‘ e N
2 " oy e=0.01
ol W, . v . b bt
. . , ity b hstmobions
o) o " Average &=0 (greedy)
’ o ) .10 reward
4 J e
2
3
IIIIIIIII 0 T T T 1
3 5 6 8 9 10 1 250 500 750 1000

* Sutton and Barto, 1958 DS-GA 3001007 | Lecture 2



Total regret L;

Analyzing regret in Multi-armed Bandit

>

>

>

How can we reason about the exploration trade off?
The (true) optimal value is: v, = max q(a)
Regret is the opportunity loss at step t: v, — g(a;)

Thus the best trade-off between exploration and exploitation
is the one that minimizes total regret L;:

t

Le=> (v. —q(a))

i=1

The agent cannot measure regret directly, but regret can be
used to analyze different RL algorithms on solved problems

DS-GA 3001 007 | Lecture 2



Action Regret A,

Analyzing regret in Multi-armed Bandit

» The action regret A, for an action a is the difference between
the optimal value and the true value of a:

» Total regret can be defined by action regrets and action counts:

t

Le=> (v —q(a)) = Y_ Ni(a)(v. —q(a)) = Y _ Ni(a

i=1 ac(A) ac(A)

» Thus the best trade-off between exploration and exploitation
is the one that ensures small count for actions with large regret

DS-GA 3001 007 | Lecture 2



Upper Confidence Bound



Explore new actions with UCB

Upper Confidence Bound (UCB)

> For each action value g(a), compute an upper confidence u(a)
such that g(a) < g¢(a) + ut(a)

» Select action that maximizes this Upper Confidence Bound:

a: = arg max [q¢(a) + u¢(a)]
ac(A)

where:
Int

ui(a)=c m

» The UCB algorithm can achieve logarithmic expected total
regret (demonstration out of scope)

DS-GA 3001 007 | Lecture 2



Explore new actions with UCB

Upper Confidence Bound (UCB)

a; = argmax [qi(a) +c¢ Int
t age(A) t N:(a)

» Uncertainty depends on number of times an action is selected:

» Small N:(a) = Large u;(a) < Estimated g-value uncertain
» Large Ni(a) = Small u;(a) < Estimated g-value is accurate

» UCB favors an action because its estimated g-value is high, or
because it has not been explored a lot relative to time elapsed

» UCB guarantees all actions will be explored without the need
to manually predefine an e-schedule

DS-GA 3001 007 | Lecture 2



Case Study: 10-armed testbed

Average performance of -greedy and UCB algorithms
Average reward over 2000 runs vs. time step

UCB c=2

E-greedy € =0.1

Average
reward
0.5f

1 750 300 750 T000

Steps

DS-GA 3001 007 | Lecture 2



Bayesian Bandit



The Bandit Model

A Bandit model is a reward transition function:

p(rla)=p(ra=rla=a) < r(a)=E(r.a)

t—+oco t

t
where E(r|a) = p(rla) x r = thoozr, = lim - Zr,
=

DS-GA 3001 007 | Lecture 2



The Bandit Model

A Bandit model is a reward transition function:

p(rla)=p(rea=rlar=a) < r(a)=E(r,a)

where E(r|la) = p(rla) x r= lim Zr,_ lim 7Zr,

t—+o0 t—+oco t

» Bandit model-based algorithm: (Expectation model)

?t(a) = ’f\'t,1(a) + « (rt = ?t,‘](a))

DS-GA 3001 007 | Lecture 2



The Bandit Model

A Bandit model is a reward transition function:

p(rla)=p(rr=rla=a) & r(a)=E(r,a)

where E(rla) = p(rla) x r=_lim Zr,f lim —Zr,

t——+oo t—+oo t

» Bandit model-based algorithm: (Expectation model)
?t(a) = ?t,1(a) + « (rt — ?t,1(a))
» Bandit value-based algorithm:

g:(a) = gi—+(a) + a(r: — gt_+(a)) ...Identical?

DS-GA 3001 007 | Lecture 2



Bayesian Bandit Models

Bayesian Bandit models the full distribution of rewards:

» Bayesian Bandit tracks a parameterized distribution function
of expected reward p(E(r)|0, a), called likelihood function

> Selects actions based on p(E(r)|#, a) e.g., using UCB

» Uses reward observed to update posterior distributions of 0:
pe(0]r) o< p(E(r)[0,a) x pe—1(0]r)

> For example, 0 = (11, 0)q if p(E(r)|0, a) are Gaussian distributions

> Bayesian Bandit allows to inject prior knowledge po(¢|a) and
then use posteriors to guide exploration

DS-GA 3001 007 | Lecture 2



Example: Bayesian Bandit with UCB

Apply UCB to a Bayesian Bandit model:

P(Q
Q@)
] \
Q@) '
|
/ i : K
Q ey uw
——co(a) —
——co(a) —

» Define likelihood function p(E(r)|#, a) = ps(q(a)) as Gaussians

» Estimate upper confidence from posterior using u:(a) = cot(a)
where o+(a) is the standard deviation of py(q(a))

> Select action a; = argmax (q¢(a) + cot(a))
a

DS-GA 3001 007 | Lecture 2



Bandit with Thompson Sampling

Bayesian model with Probability Matching:

» Instead of selecting actions from g-values with highest mean
according to py(qg(a)) with e-greedy or UCB, Thompson
sampling explicitly samples g-values from py(q(a))

» Thompson sampling selects action a according to probability
that a is the optimal action given the data sampled so far

(@) = p (a(a) = mpxq(a) | history,_,)

m(a) =E (I (q[(a) = max qt(a’)> | historytq)
w@ =31 (7 (@ = mpeau@))
where Z(True) =1, Z(False) =o0

DS-GA 3001 007 | Lecture 2



Toward Sequential RL and MDP...

Information State Space Bandit Model

» Bayesian Bandit tracks an evolving probability distribution of
reward, which can be considered an information state s;

» Each action a; causes a transition to a new state s, (by
adding information), which is a sequential RL problem

» The tree of possible chains of events grows extremely rapidly,
so approximate RL methods (lecture 5) are required

Contextual Bandits

» If context on distinctive states are given to the agent, it can
learn actions and values specific to each state

» Simplified case of more general sequential RL problem where
actions may affect next states and thus future possible rewards

DS-GA 3001 007 | Lecture 2



Policy Gradient in
Multi-armed Bandit



Policy Gradient Bandit

Can we learn a policy without learning values?
» Yes we can!

» Define a parameterized function my(a) : a — py(a) and learn
parameters # that maximize a performance measure J,,(a)

» my(a) can be arbitrary (just need distinguish possible actions)
> J.,(a) can also be arbitrary (e.g. "always turn right in a maze”)

» If J.,(a) is unknown, it needs to be learned... It is often defined
based on g;(a) = the critic in Actor-Critic algorithms:

0 =0+ aVgq(a)

» Out of scope for today (covered in depth in lecture 6)

DS-GA 3001 007 | Lecture 2



Thank you!



