
DS-GA 3001 007 | Lecture 2
Reinforcement Learning

Jeremy Curuksu, PhD
NYU Center for Data Science
jeremy.cur@nyu.edu

February 3, 2023

DS-GA 3001 RL Curriculum

Reinforcement Learning:
▶ Introduction to Reinforcement Learning
▶ Multi-armed Bandit
▶ Dynamic Programming on Markov Decision Process
▶ Model free RL Prediction and Control
▶ Function Approximation and Deep RL
▶ Parametric Policy Function Optimization
▶ Planning from a RL Model
▶ Examples of Industrial Applications
▶ Advanced Topics and Development Platforms

DS-GA 3001 007 | Lecture 2

Multi-armed Bandit

Last week:
▶ What is Reinforcement Learning?
▶ Key components of Reinforcement Learning
▶ Introduction to the Gym Python library

Today:
▶ Multi-armed Bandit with action values
▶ Upper Confidence Bound
▶ Bayesian Bandit
▶ Policy Gradient Bandit

DS-GA 3001 007 | Lecture 2

Multi-armed Bandit with
action values

DS-GA 3001 007 | Lecture 2

What is Multi-armed Bandit?

DS-GA 3001 007 | Lecture 2

What is Multi-armed Bandit?

The Multi-armed Bandit problem

▶ Reinforcement learning uses data it receives to
evaluate actions (correct actions are not given),
which creates a need to explore

▶ A Bandit is a RL problem involving learning to act in
only one situation: 1 state, k possible actions

▶ No sequential structure, past actions do not
influence the future: the distribution of reward rt
given at is identical and independent across time

DS-GA 3001 007 | Lecture 2

What is Multi-armed Bandit?

Example of Multi-armed Bandit problem

Which lever would you pull?

DS-GA 3001 007 | Lecture 2

What is Multi-armed Bandit?

Example of Multi-armed Bandit problem

How about now?
DS-GA 3001 007 | Lecture 2

Exploration vs. Exploitation

Online decision-making involves a fundamental choice:

Exploitation:
Maximize performance using current knowledge

Exploration:
Increase knowledge

▶ The best strategy may involve short-term sacrifices

▶ The agent needs gather enough information to make the best
overall decisions

DS-GA 3001 007 | Lecture 2

Multi-armed Bandit Formalism

Problem Statement:

▶ The agent is faced repeateadly with a
choice among k different actions (”arms”)

▶ At each step t the agent selects an
action at

▶ After each choice it receives a numerical reward rt that
depends on the action selected

▶ The distribution p(r|a) is fixed but unknown

▶ Goal is to maximize cumulative reward:
t∑
i=1

ri

DS-GA 3001 007 | Lecture 2

Exploit knowledge with action value

Action value for action a is the expected reward:

q(a) .
= E(r|a) = p(r|a)× r = lim

t→+∞

1
t

t∑
i=1

ri|a

▶ An estimate is the average of the sampled rewards:

qt(a)
.
=
sum of rewards when a taken prior to t
number of times a taken prior to t

▶ With an estimate of q(a), we can select an action:

at
.
= argmax

a
qt(a)Greedy policy:

DS-GA 3001 007 | Lecture 2

Incremental implementation

The agent can learn online with a moving average:

For a = at : qt(a) =
1
t

t∑
i=1

ri|a

qt(a) = qt−1(a) +
1
t
(rt − qt−1(a))

∀ a ̸= at : qt(a) = qt−1(a)

For non-stationary problems, the agent can track q(a):

qt(a) = qt−1(a) + α (rt − qt−1(a))

DS-GA 3001 007 | Lecture 2

Explore new actions with ϵ-greedy

The agent must explore to learn q-values

▶ Greedy selection always exploits current knowledge on
q-values to maximize reward, it never explore

▶ Alternative: Behave greedily most of the time, but every once
in a while select a random action

▶ ϵ-greedy algorithm:
▶ Select random action (explore) with p = ϵ

▶ Select greedy action (exploit) with p = 1 − ϵ

▶ When all actions are sampled indefinitely:

lim
t→+∞

qt(a) = q(a)

DS-GA 3001 007 | Lecture 2

Practice: k-armed Bandit Algorithm

k-armed Bandit both evaluates q(a) and improves a:

Initialize, for a = 1 to k:

q(a) = 0

n(a) = 0

Loop forever:

a = random action with p = epsilon

or = argmax q(a) with p = 1 - epsilon

Execute a, observe r

n(a) = n(a) + 1

q(a) = q(a) + 1/n(a) * (r - q(a))

DS-GA 3001 007 | Lecture 2

Case Study: 10-armed testbed

k-armed Bandit problem
Distribution of q(a) vs. action a

Average performance of ϵ-greedy
Average reward over 2000 runs vs. time step

* Sutton and Barto, 1998
DS-GA 3001 007 | Lecture 2

Total regret Lt

Analyzing regret in Multi-armed Bandit

▶ How can we reason about the exploration trade off?

▶ The (true) optimal value is: v∗ = max
a
q(a)

▶ Regret is the opportunity loss at step t: v∗ − q(at)

▶ Thus the best trade-off between exploration and exploitation
is the one that minimizes total regret Lt:

Lt =
t∑
i=1

(v∗ − q(ai))

▶ The agent cannot measure regret directly, but regret can be
used to analyze different RL algorithms on solved problems

DS-GA 3001 007 | Lecture 2

Action Regret ∆a

Analyzing regret in Multi-armed Bandit

▶ The action regret ∆a for an action a is the difference between
the optimal value and the true value of a:

∆a = (v∗ − q(a))

▶ Total regret can be defined by action regrets and action counts:

Lt =
t∑
i=1

(v∗ − q(ai)) =
∑
a∈(A)

Nt(a)(v∗ − q(a)) =
∑
a∈(A)

Nt(a)∆a

▶ Thus the best trade-off between exploration and exploitation
is the one that ensures small count for actions with large regret

DS-GA 3001 007 | Lecture 2

Upper Confidence Bound

DS-GA 3001 007 | Lecture 2

Explore new actions with UCB

Upper Confidence Bound (UCB)

▶ For each action value q(a), compute an upper confidence ut(a)
such that q(a) ≤ qt(a) + ut(a)

▶ Select action that maximizes this Upper Confidence Bound:

at = argmax
a∈(A)

[qt(a) + ut(a)]

where:
ut(a) = c

√
ln t
Nt(a)

▶ The UCB algorithm can achieve logarithmic expected total
regret (demonstration out of scope)

DS-GA 3001 007 | Lecture 2

Explore new actions with UCB

Upper Confidence Bound (UCB)

at = argmax
a∈(A)

[
qt(a) + c

√
ln t
Nt(a)

]

▶ Uncertainty depends on number of times an action is selected:
▶ Small Nt(a) ⇒ Large ut(a) ⇐ Estimated q-value uncertain
▶ Large Nt(a) ⇒ Small ut(a)⇐ Estimated q-value is accurate

▶ UCB favors an action because its estimated q-value is high, or
because it has not been explored a lot relative to time elapsed

▶ UCB guarantees all actions will be explored without the need
to manually predefine an ϵ-schedule

DS-GA 3001 007 | Lecture 2

Case Study: 10-armed testbed

Average performance of ϵ-greedy and UCB algorithms
Average reward over 2000 runs vs. time step

* Sutton and Barto, 1998

DS-GA 3001 007 | Lecture 2

Bayesian Bandit

DS-GA 3001 007 | Lecture 2

The Bandit Model

A Bandit model is a reward transition function:

p (r |a) = p (rt+1 = r |at = a) ⇔ r(a) = E(r,a)

where E(r|a) = p(r|a)× r = lim
t→+∞

t∑
i=1

r̂i = lim
t→+∞

1
t

t∑
i=1

ri

DS-GA 3001 007 | Lecture 2

The Bandit Model

A Bandit model is a reward transition function:

p (r |a) = p (rt+1 = r |at = a) ⇔ r(a) = E(r,a)

where E(r|a) = p(r|a)× r = lim
t→+∞

t∑
i=1

r̂i = lim
t→+∞

1
t

t∑
i=1

ri

▶ Bandit model-based algorithm: (Expectation model)

r̂t(a) = r̂t−1(a) + α (rt − r̂t−1(a))

DS-GA 3001 007 | Lecture 2

The Bandit Model

A Bandit model is a reward transition function:

p (r |a) = p (rt+1 = r |at = a) ⇔ r(a) = E(r,a)

where E(r|a) = p(r|a)× r = lim
t→+∞

t∑
i=1

r̂i = lim
t→+∞

1
t

t∑
i=1

ri

▶ Bandit model-based algorithm: (Expectation model)

r̂t(a) = r̂t−1(a) + α (rt − r̂t−1(a))

▶ Bandit value-based algorithm:

qt(a) = qt−1(a) + α (rt − qt−1(a)) ...Identical?

DS-GA 3001 007 | Lecture 2

Bayesian Bandit Models

Bayesian Bandit models the full distribution of rewards:

▶ Bayesian Bandit tracks a parameterized distribution function
of expected reward p(E(r)|θ,a), called likelihood function

▶ Selects actions based on p(E(r)|θ,a) e.g., using UCB

▶ Uses reward observed to update posterior distributions of θ:

pt(θ|r) ∝ p(E(r)|θ,a)× pt−1(θ|r)

▶ For example, θ = (µ, σ)a if p(E(r)|θ,a) are Gaussian distributions

▶ Bayesian Bandit allows to inject prior knowledge p0(θ|a) and
then use posteriors to guide exploration

DS-GA 3001 007 | Lecture 2

Example: Bayesian Bandit with UCB
Apply UCB to a Bayesian Bandit model:

▶ Define likelihood function p(E(r)|θ,a) = pθ(q(a)) as Gaussians
▶ Estimate upper confidence from posterior using ut(a) = cσt(a)

where σt(a) is the standard deviation of pθ(q(a))
▶ Select action at = argmax

a
(qt(a) + cσt(a))

DS-GA 3001 007 | Lecture 2

Bandit with Thompson Sampling
Bayesian model with Probability Matching:

▶ Instead of selecting actions from q-values with highest mean
according to pθ(q(a)) with ϵ-greedy or UCB, Thompson
sampling explicitly samples q-values from pθ(q(a))

▶ Thompson sampling selects action a according to probability
that a is the optimal action given the data sampled so far

πt(a) = p
(
q(a) = max

a′
q(a′) | historyt−1

)
πt(a) = E

(
I
(
qt(a) = max

a′
qt(a′)

)
| historyt−1

)

πt(a) =
t∑
i=1

1
t

(
I
(
qt(a) = max

a′
qt(a′)

))

where I(True) = 1 , I(False) = 0

DS-GA 3001 007 | Lecture 2

Toward Sequential RL and MDP...
Information State Space Bandit Model
▶ Bayesian Bandit tracks an evolving probability distribution of

reward, which can be considered an information state st
▶ Each action at causes a transition to a new state st+1 (by

adding information), which is a sequential RL problem

▶ The tree of possible chains of events grows extremely rapidly,
so approximate RL methods (lecture 5) are required

Contextual Bandits
▶ If context on distinctive states are given to the agent, it can

learn actions and values specific to each state

▶ Simplified case of more general sequential RL problem where
actions may affect next states and thus future possible rewards

DS-GA 3001 007 | Lecture 2

Policy Gradient in
Multi-armed Bandit

DS-GA 3001 007 | Lecture 2

Policy Gradient Bandit

Can we learn a policy without learning values?
▶ Yes we can!

▶ Define a parameterized function πθ(a) : a 7→ pθ(a) and learn
parameters θ that maximize a performance measure Jπθ

(a)

▶ πθ(a) can be arbitrary (just need distinguish possible actions)

▶ Jπθ
(a) can also be arbitrary (e.g. ”always turn right in a maze”)

▶ If Jπθ
(a) is unknown, it needs to be learned... It is often defined

based on qt(a) = the critic in Actor-Critic algorithms:

θ = θ + α∇θ q(a)

▶ Out of scope for today (covered in depth in lecture 6)

DS-GA 3001 007 | Lecture 2

Thank you!

DS-GA 3001 007 | Lecture 2

