
DS-GA 3001 007 | Lecture 1
Reinforcement Learning

Jeremy Curuksu, PhD
NYU Center for Data Science
jeremy.cur@nyu.edu

February 1, 2023

Week 1

1. Course Information

2. Introduction to Reinforcement Learning

DS-GA 3001 007 | Lecture 1

Course Information

DS-GA 3001 RL Instructional Team

Instructor:

▶ Dr. Jeremy Curuksu, jeremy.cur@nyu.edu

Section Leader:

▶ Anudeep Tubati, at5373@nyu.edu

Graders:

▶ Shreya Sinha, ss14468@nyu.edu

▶ Anudeep Tubati, at5373@nyu.edu

DS-GA 3001 007 | Lecture 1

DS-GA 3001 RL Schedule

DS-GA 3001 RL Lecture:

▶ Thursdays from 4:55pm-6:35pm EST
▶ Location: GCASL, 238 Thompson St, Room 361

DS-GA 3001 RL Lab:

▶ Wednesdays from 8:10pm-9:00pm EST
▶ Location: Bobst Library, Room LL138

DS-GA 3001 007 | Lecture 1

DS-GA 3001 RL Curriculum

Reinforcement Learning:
▶ 1. Introduction to Reinforcement Learning
▶ 2. Multi-armed Bandits
▶ 3. Dynamic Programming on Markov Decision Process
▶ 4. Model free RL Prediction and Control
▶ 5. Value Function Approximation (Deep RL)
▶ 6. Policy Function Approximation (Actor-Critic)
▶ 7. Planning from a Model of the Environment
▶ 8. Examples of Industrial Applications
▶ 9-10. Advanced Topics and Development Platforms

DS-GA 3001 007 | Lecture 1

DS-GA 3001 RL Resources

▶ Lecture and lab practice code + lecture slides

▶ Reinforcement Learning: An introduction (2018) by R.
Sutton and A. Barto

▶ Python RL libraries used in this course have free, recent
and online documentations. The library we will use most
is OpenAI Gym (maintained as Gymnasium since 2022)

* Click on hyperlinks for free versionDS-GA 3001 007 | Lecture 1

http://incompleteideas.net/book/RLbook2020.pdf
https://www.gymlibrary.dev/
https://gymnasium.farama.org/

Advice to Succeed in this Course

▶ Attend both lectures and labs. Lectures and labs
complement each other to set you up for success

▶ Read book from Sutton & Barto at least chapt 3-10 and 13

▶ Read the Gym documentation, at least the introduction

▶ Before implementing a RL solution, define the agent’s
goal, states, actions, and reward functions

▶ Implement, Document, and Customize RL code. Modern
RL libraries are very recent and not always reliable

▶ Ask questions!
DS-GA 3001 007 | Lecture 1

Introduction to
Reinforcement
Learning

Introduction to Reinforcement Learning

Today topics:

▶ What is Reinforcement Learning?

▶ Key components of Reinforcement Learning

▶ Introduction to the Gym Python library

DS-GA 3001 007 | Lecture 1

What is Reinforcement
Learning?

DS-GA 3001 007 | Lecture 1

What is Reinforcement Learning?

Example: Please create a song about mathematics

DS-GA 3001 007 | Lecture 1

What is Reinforcement Learning?

Example: Please create a song about mathematics

DS-GA 3001 007 | Lecture 1

What is Reinforcement Learning?

Example: Please create a song about mathematics

DS-GA 3001 007 | Lecture 1

What is Reinforcement Learning?
Behavior is primarily shaped by reinforcement rather than free-will:
”Skinner saw human action as dependent on consequences of
previous actions, a theory he called the principle of reinforcement:
If the consequences to an action are bad, there is a high chance the
action will not be repeated; if the consequences are good, the
probability of the action being repeated becomes stronger”

On B. Skinner, 1904-1990 (in Psychology, Schacter, 2011)

DS-GA 3001 007 | Lecture 1

https://www.youtube.com/watch?v=yhvaSEJtOV8

What is Reinforcement Learning?

▶ RL is the science of learning to make decisions from
interactions with an environment
▶ Industrial revolution and Machine Age (1750-1940)

Automation of repeated physical solutions

▶ Digital revolution and Information Age (1960-Now)
Automation of repeated mental solutions

▶ Artificial Intelligence revolution (Now -?)
Allow machines to find solutions themselves

▶ Why learn by reinforcement?
▶ Find previously unknown solutions
▶ Find solutions online for unforeseen circumstances

DS-GA 3001 007 | Lecture 1

Reinforcement Learning History
In short...

▶ 1850-1911: Trial-and-error learning in psychology: The Law of Effect (Thorndike)
▶ 1927: Theory of conditioned reflexes (Pavlov)
▶ 1938: Radical behaviorism and principle of reinforcement (Skinner)
▶ 1948: Trial-and-error learning in a computer system (Turing)
▶ 1952-1954: Maze-running robot (Shannon), Reinforcement calculator (Minsky)
▶ 1957: Dynamic programming to solve optimal control in MDP (Bellman)
▶ 1959: Checkers-playing program (Samuel)
▶ 1960s-70s: Learning automata, K-armed Bandits, Genetic algorithms
▶ 1972: Model of classical conditioning based on temporal-difference (Klopf)
▶ 1973: RL system (”with a critic”) to play Blackjack
▶ 1983: Actor–critic architecture to solve pole-balacing problem (Sutton, Barto)
▶ 1989: Q-learning algorithm (Watkins)
▶ 1992: Backgammon playing program (Tesauro’s TD-Gammon)
▶ 2013: Deep Q-Network reaches superhuman ability at Atari 2600
▶ 2016: AlphaGo reaches superhuman ability at Go (Silver)

DS-GA 3001 007 | Lecture 1

Reinforcement Learning Examples

Problem requiring to make decisions with a goal in mind:
▶ Drive a car
▶ Fly a helicopter
▶ Manage a financial portfolio
▶ Play video or board game
▶ Control a power station
▶ Make a robot walk

DS-GA 3001 007 | Lecture 1

Reinforcement Learning Examples

Play Go (to win)
▶ State:

Configuration of
the playing board

▶ Action:
Any valid move

▶ Reward:
Win = +1
Lose = -1
Else = 0

DS-GA 3001 007 | Lecture 1

Reinforcement Learning Examples

Drive (safely to a destination)
▶ State:

Camera pixels
Traffic
Weather

▶ Actions:
Steering wheel
Accelerator/Break

▶ Reward:
Destination = +1
Honking = -1
Collision = -100

DS-GA 3001 007 | Lecture 1

Reinforcement Learning Examples

Example of robot operating on its own

DS-GA 3001 007 | Lecture 1

https://openai.com/blog/solving-rubiks-cube/

How to formalize Reinforcement Learning?

▶ To find unknown or online solutions, intelligent beings
learn by interacting with their environment:
▶ Actively gather experience
▶ Learn long-term consequences of actions
▶ Predict an uncertain future

▶ Supervised Learning formalism is limited:

hθ
(
x(n)

)
7−→ y(n) θ (k+1) = θ k − α

∂J
∂θ

J (θ) = 1
2N

N∑
n=1

(
hθ

(
x(n)

)
− y(n)

)2

DS-GA 3001 007 | Lecture 1

How to formalize Reinforcement Learning?

▶ To find unknown or online solutions, intelligent beings
learn by interacting with their environment:
▶ Actively gather experience
▶ Learn long-term consequences of actions
▶ Predict an uncertain future

▶ Supervised Learning formalism is limited:

hθ
(
x(n)

)
7−→ y(n) θ (k+1) = θ k − α

∂J
∂θ

J (θ) = 1
2N

N∑
n=1

(
hθ

(
x(n)

)
− y(n)

)2
What if y(n) is not known?

DS-GA 3001 007 | Lecture 1

Formalizing Reinforcement Learning

πθ (st) 7−→ p (at)

J (θ) = ?

Science of learning to make decisions from interactions

▶ Sample experience by interacting with the environment
▶ No supervision, only reward signals
▶ Feedback can be delayed, time matters
▶ Goal-directed. Need learn how to act in sequence over time to

reach goals
DS-GA 3001 007 | Lecture 1

Formalizing Reinforcement Learning

DS-GA 3001 007 | Lecture 1

Formalizing Reinforcement Learning

DS-GA 3001 007 | Lecture 1

Key Components of
Reinforcement Learning

DS-GA 3001 007 | Lecture 1

Components of Reinforcement Learning

At each step, the agent:
▶ Receives observation ot
▶ Executes action at
▶ Receives reward rt+1

The environment:
▶ Receives action at
▶ Send reward rt+1

▶ Send observation ot+1

DS-GA 3001 007 | Lecture 1

Components of Reinforcement Learning

A Reinforcement Learning solution has 3 components:

1. The Environment

2. The Agent:
▶ States and Observations
▶ Actions and Policies
▶ Value Function (for states and/or actions)
▶ Model of the environment dynamics

3. A Reward signal

DS-GA 3001 007 | Lecture 1

The Environment
= What is *not* defined as the agent

▶ Well-defined in simulation environment, but infinite in reality

▶ The environment has its own internal state which is not usually
visible to the agent. It may contain lot of irrelevant information

▶ Can be defined relative to the agent: the environment is what
the agent perceives from it = observations and rewards

DS-GA 3001 007 | Lecture 1

The Agent

= An entity equipped with sensors, effectors, and goals

▶ The agent performs actions to reach a goal
▶ It may learn policies mapping specific states to specific actions
▶ It may learn value functions for states or actions
▶ It may learn a model of the environment dynamics

DS-GA 3001 007 | Lecture 1

States and Observations

The agent state st captures information available to the
agent at step t about its environment

▶ An observation a.k.a. sensation is the (raw) input of the agent’s
sensors such as measurements, images, tactile signals

▶ A state can be a raw or processed observation, or a structure
built up over time from sequences of observations

▶ The agent state is often not the same as the environment state.
It depends on what the agent observes on the environment

▶ In the simplest case, there is only one state (next lecture)

DS-GA 3001 007 | Lecture 1

Defining the Agent State

The state can depend on previous states and actions

▶ The agent may see the full environment state or only get
partial observations

▶ A history is a sequence of observations, actions, and rewards:

historyt = (o0,a0, r1,o1, ... , ... , ot−1,at−1, rt,ot)

▶ The agent state can be defined as a function of the history:

st+1 = f (st,at, rt+1,ot+1)

where f is a state update function

▶ The agent’s action depends on its state

DS-GA 3001 007 | Lecture 1

Defining the Agent State
Example of Maze Environment

▶ The agent may observe the full environment

DS-GA 3001 007 | Lecture 1

Defining the Agent State
Example of Maze Environment

▶ The agent may only partially observe the environment

DS-GA 3001 007 | Lecture 1

Defining the Agent State
Example of Maze Environment

▶ The agent may only partially observe the environment

DS-GA 3001 007 | Lecture 1

Defining the Agent State
Example of Maze Environment

▶ How would you construct the agent state to distinguish
between these two locations?

DS-GA 3001 007 | Lecture 1

Actions and Policies

The goal of the agent is to select actions to maximise
expected accumulated reward across an entire policy

▶ Actions may have long term consequences on future
accessible states and reward: reward may be delayed

▶ Examples of Actions:
▶ Suggest a song or a movie
▶ Translate & rotate articulation joints of a robot
▶ Manage a financial portfolio (may take months to mature)
▶ Block opponent moves (help win game many moves later)

▶ A policy is a function that maps states to actions:
▶ Deterministic policy: π : s 7−→ a
▶ Stochastic policy: π : s 7−→ p(a1|s),p(a2|s), ...,p(ak|s)

DS-GA 3001 007 | Lecture 1

Reward and Return

The rewards received evaluate the actions taken
▶ A reward rt at time t is a scalar feedback signal which defines

the agent’s goal = maximize the accumulated rewards:

Gt = rt+1 + rt+2 + ...rend

▶ Gt is called the return

▶ Examples:
▶ rT = +1 or rT = 0 (win or lose), rt = 0 if t ̸= T
▶ rt = −n× price or rt = n× price (buy or sell n stocks)

▶ Definition of the Reward Hypothesis: ”All goals and purposes
can be encoded mathematically as maximizing the sum of
accumulated rewards”

DS-GA 3001 007 | Lecture 1

State Value vπ(s)

The value of a state is the expected return for that state

▶ Value of a state s for a given policy π:

vπ(s) = E
π
(Gt | s)

vπ(s) indicates how good it is to be in s when following π

▶ Gt can be discounted to trade off short- vs. long-term rewards:

Gt = rt+1 + γ rt+2 + γ2 rt+3 + ...

▶ Gt can be defined recursively, and so too can vπ(s):

Gt = rt+1 + γ Gt+1

vπ(s) = E
π
(rt+1 + γ Gt+1 | s)

vπ(s) = E
π
(rt+1 + γ vπ(st+1) | s) (Bellman equation)

DS-GA 3001 007 | Lecture 1

State-Action Value qπ(s,a)

A value can also be defined for each action in a state

▶ Value of an action a in a state s for a given policy π:

qπ(s,a) = E
π
(Gt | s,a)

qπ(s,a) indicates how good it is to choose a in s under π

▶ Again qπ(s,a) can be defined recursively:

qπ(s,a) = E
π
(rt+1 + γ qπ(st+1,at+1) | s,a)

▶ Bellman equations hold for optimal (=highest possible) values:

q∗(s,a) = E(rt+1 + γ max
ak

q∗(st+1,ak) | s,a)

They are used to create RL algorithms (example: Q-learning)

DS-GA 3001 007 | Lecture 1

Model of Environment Dynamics

A model can be used to simulate an environment

▶ Reward function for Bandits model (single state model):

p (r |a) = p (rt+1 = r |at = a) ⇔ r(a) = E(r,a)

▶ General transition function to predict next state and reward:

p (s′, r | s,a) = p (st+1 = s′, rt+1 = r | st = s,at = a)

A RL model does not infer policies (does not ”act”)

▶ A model can be a fully observable Markov Decision Process:

p (s, r | st,at) = p (s, r |Ht,at)

Or a partially observable Markov Decision Process (POMDP)

DS-GA 3001 007 | Lecture 1

Model of Environment Dynamics

Planning
from a model:

▶ If the rules of the game are perfectly known, couldn’t an agent
plan ahead and find an optimal policy?

▶ An agent could ”plan” (= think): If I take action a from state s,
what would the next state be? What would the score be?

▶ Querying a game emulator is an example of (generative) model
DS-GA 3001 007 | Lecture 1

RL Taxonomy

Categories
of RL agents:

▶ Model-based: Use a model to learn policy and/or value function (lecture 3, 7)
▶ Model-free: Learn policy and/or value function without model (lecture 4-5)
▶ Value-based: Learn value function, not policy function (lectures 4-5)
▶ Policy-based: Learn policy function, not value function (lecture 6)
▶ Actor-Critic: Learn policy and value functions (lecture 6)

DS-GA 3001 007 | Lecture 1

RL Challenges and Opportunities
1. Control vs. Prediction. How to search for optimal policies and

estimate their values simultaneously?

2. Exploration vs. Exploitation. An agent must explore to find
information, yet must exploit known information to get reward

3. Generalization to large state-action spaces. For example the
game Go has over 10170 possible positions

4. Combining Learning with Planning: In addition to interact with
the environment, an agent can learn and plan from a model

5. Simulated vs. real experience. Trial-and-error impractical

6. Other forms of learning: From rewards? From demonstrations?
Imitations? Supervisions? What does Psychology teach us?

7. Convergence vs. tracking and adaptability
DS-GA 3001 007 | Lecture 1

Introduction to Python’s
Gym library

DS-GA 3001 007 | Lecture 1

Practice: RL in Gym environments

What is Gym?

▶ An open source toolkit for testing RL algorithms

▶ Provides you with baseline RL environments

▶ Has a standard API to access these environments

▶ Up to you to create RL agents to interact with these
environments

▶ Widely used, safe simulations

DS-GA 3001 007 | Lecture 1

Practice: RL in Gym environments

Example of Gym environments: Atari 2600 video games

▶ Rules of games unknown by agent
▶ Agent can learn directly from interactive game-play
▶ Agent picks actions, sees pixels, receives scores

DS-GA 3001 007 | Lecture 1

Practice: RL in Gym environments

Implementing a Gym environment

1.

Instantiate
environment

env =
gym.make(”name”)

▶ Assign it to a
variable

▶ Access it
anytime later

2.

Initialize
environment

s =
env.reset()

▶ Used to begin
an episode

▶ Return initial
state

3.

Select
actions

a =
yourAgent(state)

▶ Apply your
policy

▶ Map state to
action(s)

4.

Step through
environment

s, r, done, info =
env.step(action)

▶ Used at every
step

▶ Test if episode
should end

DS-GA 3001 007 | Lecture 1

Practice

DS-GA 3001 007 | Lecture 1

What comes next...
DS-GA 3001 RL Syllabus:

1. Introduction to Reinforcement Learning

2. Multi-armed Bandit

3. Markov Decision Process and Dynamic Programming

4. Model free RL Prediction and Control

5. Function Approximation

6. Policy Optimization

7. Planning from a RL Model

8. Examples of Industrial Applications

9. Advanced RL Topics

10. RL Development Platforms
DS-GA 3001 007 | Lecture 1

Thank you!

DS-GA 3001 007 | Lecture 1

	Course Information
	Introduction to Reinforcement Learning
	What is Reinforcement Learning
	Key Components of Reinforcement Learning
	Introduction to Python's Gym library

