DS-GA 1007 | Lecture 3

Programming for Data Science

Jeremy Curuksu, PhD
NYU Center for Data Science
jeremy.cur@nyu.edu

September 25, 2023

Program Efficiency

DS-GA 1007 Curriculum

Programming for Data Science:

| 2

vV Vv V.V vV vV VY

Introduction to Programming in Python

Best Practice Programming and Software Engineering
Program Efficiency

Interacting with Programs

Array Manipulation for Scientific Computing

Data Visualization

Advanced Data Objects (x4)

Environments for Collaborative Programming

Industrial Applications

DS-GA 1007 | Lecture 3

Program Efficiency

Last week:

» Modularization and Abstraction
» Functions and Objects in Python
» Testing and Debugging Programs

Today:
» Program Run Time and Algorithmic Complexity
» Examples of Iterative and Recursive Algorithms
» Examples of Search and Sort Algorithms

DS-GA 1007 | Lecture 3

Program Run Time and
Algorithmic Complexity

What is Program Efficiency?

How to compare the efficiency of two different programs?

DS-GA 1007 | Lecture 3

What is Program Efficiency?

How to compare the efficiency of two different programs?

» How to measure the efficiency of an algorithm independent of
machine or specific implemention?

DS-GA 1007 | Lecture 3

What is Program Efficiency?

How to compare the efficiency of two different programs?

» How to measure the efficiency of an algorithm independent of
machine or specific implemention?

» How to reason about an algorithm to predict the amount of
time it will need to solve a problem of a particular size?

DS-GA 1007 | Lecture 3

What is Program Efficiency?

How to compare the efficiency of two different programs?
» How to measure the efficiency of an algorithm independent of
machine or specific implemention?

» How to reason about an algorithm to predict the amount of
time it will need to solve a problem of a particular size?

» How to relate choices in algorithm design to time efficiency?

DS-GA 1007 | Lecture 3

What is Program Efficiency?

How to compare the efficiency of two different programs?

» How to measure the efficiency of an algorithm independent of
machine or specific implemention?

» How to reason about an algorithm to predict the amount of
time it will need to solve a problem of a particular size?

» How to relate choices in algorithm design to time efficiency?

Example of algorithm to compute n?:

def square(n):
n2 =0
for i in range(n):
for j in range(n):
n2 += 1 Isn’t there a more efficient way?

return n2
DS-GA 1007 | Lecture 3

Measures of a program'’s efficiency

Some options:

1. Measure the run time with a timer
2. Count the number of operations

3. Measure an order of growth as function of
input size

DS-GA 1007 | Lecture 3

Measure the run time of a program

Measure clock time on test data

V" Run time varies between different algorithms

x Run time varies between implementations

x Run time varies between computers

x Run time for large inputs not predictable based on small inputs

Example:
import time
t0 = time.time()
fact =1
for i in range(1,1000):
fact *x= i
dt = time.time() - tO
print("Run time: {} seconds".format(dt))

DS-GA 1007 | Lecture 3

Example of run time measurement

Measure run time with %timeit*

Jtimeit L = [n**2 for n in range(1000)]

Output:
148 s * 64 ns per loop (mean + std dev of 7 runs, 10,000 loops each)

Jtimeit L = [square(n) for n in range(1000)]

Output:
7.34 s £ 60.5 ms per loop (mean * std. dev. of 7 runs, 1 loop each)

*Details on Python magic commands:
jakevdp.github.io/PythonDataScienceHandbook/01.03-magic-commands.html

DS-GA 1007 | Lecture 3

https://jakevdp.github.io/PythonDataScienceHandbook/01.03-magic-commands.html

Counting Operations in a Program

Count number of operations as function of input size:

v’ #ops varies between different algorithms
#Hops varies between implementations

X

v #ops does not vary between computers

v #ops for large inputs is predictable based on small inputs
X

No clear definition of which operations to count

Example:
def factorial(n):
fact = 1 10ps
for i in range(l,n+1): 10ps
fact *= i 2 0ps
return fact =>1+3n0ps

DS-GA 1007 | Lecture 3

Generalization: Order of Growth

Count number of key operations in term of input size

> itops: Measures an algorithm’s run time in term of input size
but does not measure scalability to arbitrarily large input size

» Asymptotic Growth: We need measure scalability to arbitrarily
large input size, independent of specific implementation

»> Focus on Dominant Terms: We need measure an invariant
order of magnitude based on largest factors/bottlenecks

» Lower/Upper Bound: We can measure the average, best or
worst case over all possible inputs of a given size

DS-GA 1007 | Lecture 3

O() as Order of Growth of a Program

Upper Bound Asymptotic Growth relative to input size:

v 0() varies between algorithms, not implementations
v 0() measures rate of growth of run time as input size grows
v' 0() is a tight upper bound on order of magnitude growth

Example:

def factorial(n):

fact = 1 10ps
for i in range(l,n+1): 10pS
fact *x= 1 2 0ps
return fact =>1+3n 0ops

Ignore additive constants => 3n and multiplicative constants => n

Worst case asymptotic complexity = O(n)
DS-GA 1007 | Lecture 3

Analyzing Complexity of a Program

Order of Growth of a Program O():

» Rule 1: Focus on dominant terms inside statements: Drop
additive factors and multiplicative constants

Examples:
» 1+ 3n has worst case complexity of O(n)
» 2+ 2n+ n? has worst case complexity of O(n?)
> 10000 + 1000000n + n? has worst case complexity of O(n?)
>

n°> + 5" has worst case complexity of O(5")

DS-GA 1007 | Lecture 3

Analyzing Complexity of a Program

Order of Growth of a Program O():

»> Rule 2: Use the law of addition for sequential statements: Just
add up orders of growth between consecutive operations

O(f(n) + g(n)) = O(f(n)) + O(g(n))

Example:
for i in range(n):
print (i)
for j in range(n*n):
print(j)
» The first for loop has worst case complexity of O(n)
» The second for loop has worst case complexity of O(n?)
> Worst case complexity => 0(n) + O(n?) = O(n?)

DS-GA 1007 | Lecture 3

Analyzing Complexity of a Program

Order of Growth of a Program O():

» Rule 3: Use the law of multiplication for nested statements:
Multiply orders of growth between nested loops because an
inner loop is repeated for each outer loop iteration

O(f(n) x g(n)) = O(f(n)) < O(g(n))

Example:
for i in range(n):
for j in range(n):
print(i,j)
» The first for loop has worst case complexity of O(n)
» The second for loop has worst case complexity of O(n)
» Worst case complexity => O(n) x O(n) = O(n?)

DS-GA 1007 | Lecture 3

Map of Algorithmic Complexities

0() relates choices in algorithm design to time efficiency. The goal
of the programmer is to write algorithms that go up in the map

0(1) : constant

O(log n) : T — logarithmic

0 (n) : linear — /

O(n log n): « loglinear
0 (n¢) : polynomial —
0 (cm) : «— exponential

DS-GA 1007 | Lecture 3

Map of Algorithmic Complexities

Time to complete (in operations)

Size of input data

DS-GA 1007 | Lecture 3

Examples of Algorithm
Complexity Analysis

Algorithm Complexity Analysis: x>

Example of iterative nested loop to calculate x*:

def square(x):
x2 =0
for i in range(x):
for j in range(x):
x2 += 1
return x2 Algorithm Complexity: O(n?)

DS-GA 1007 | Lecture 3

Algorithm Complexity Analysis: x>

Example of recursive function to calculate x>

(x—1)? = x> —2x+1
<=> X = (X—1)P°+2x—1

def square(x):
if x ==
return x
else:

return (square(x-1) + 2*x - 1)
Algorithm Complexity: O(n)

DS-GA 1007 | Lecture 3

Algorithm Complexity Analysis: !x

Example of iterative loop to calculate !x:

def factorial(x):
fact = 1
for i in range(1,x+1):
fact *= 1

return fact Algorithm Complexity: O(n)

DS-GA 1007 | Lecture 3

Algorithm Complexity Analysis: !x

Example of recursive function to calculate !x

def factorial(x):

if x <= 1:
return 1
else:

fact = x * factorial(x-1)

return fact

Algorithm Complexity: O(n)

DS-GA 1007 | Lecture 3

Search and Sort
Algorithms

Linear Search of Element in List

Linear Search: Unsorted List

def search(L,e):
found = False
for i in range(len(L)):
if L[i] == e:
found = True
return found Algorithm Complexity: O(n)
(due to worst case scenarios)

DS-GA 1007 | Lecture 3

Linear Search of Element in List

Linear Search: Sorted List

def search(L, e):
for i in range(len(L)):
if L[i] == e:
return True
if L[i] > e:
return False
return False Algorithm Complexity: O(n)
(due to worst case scenarios)

DS-GA 1007 | Lecture 3

Recursive Search of Element in List

Bisection Search

I » Pick index that divides list
in half, test if L[m] == e. If

I .. : :
I © e not, test if L[m] is larger or
‘Ee\e«‘e““ smaller than e. Then,
. '*“ﬁ depending on the answer,
l % e search left or right half of L
\le\e‘“e“
> Bisection is a divide-and-
Search complete when conquer algorithm: Break
% =1 <=> i=logn original problem in smaller
versions of the problem
Complexity: O(log n) (smaller lists)

DS-GA 1007 | Lecture 3

Recursive Search of Element in List

Bisection Search: Sorted List*

def bisection_search(L,e,low,high):
if high == low:

return L[low] == e
mid = (low + high)//2
if L[mid] == e: Algorithm Complexity: O(log n)

return True
elif L[mid] > e:
if low == mid: # Nothing left to search
return False
else:
return bisection_search(L,e,low,mid - 1)
else:

return bisection_search(L,e,mid + 1,high) *Sorting required

DS-GA 1007 | Lecture 3

Recursive Search of Element in List

Bisection Search is Faster for Large Lists

. search —
/_— binary

-

I

search time

number of elements

DS-GA 1007 | Lecture 3

Sorting Algorithms

Is it Better to Sort before Searching?

> Never True for Single Search: Sorting a collection of elements
requires to look at each one at least once

» Amortize Cost: Sort becomes beneficial for multiple searches:
sort list once, then do many searches

» Algorithmic Complexity of k searches:
O(sort) + kR x O(logn) < k x O(n)?
=> When k is large, run time for sort may become irrelevant
relative to run time for search

DS-GA 1007 | Lecture 3

Sorting Algorithm: MonkeySort

MonkeySort: Randomly shuffle, repeat until sorted

def monkey_sort(L):
while not is_sorted(L):
random.shuffle(L)

Algorithm Complexity:
» Best case: O(h)

» Worst case: O(c0)

DS-GA 1007 | Lecture 3

Sorting Algorithm: SelectionSort

SelectionSort: For each index i in list, loop from i to end
of list, find lowest element, swap with element at index i

def selection_sort(L):
for i in range(len(L)):
min_i = 1
for j in range(i+1, len(L)):
if L[j] < L[min_i]:
]
Lmin_i], L[i]

min_i
L[i], L[min_1i]

Algorithm Complexity: O(n?)

DS-GA 1007 | Lecture 3

Sorting Algorithm: BubbleSort

BubbleSort: Pass through pairs of elements, compare
elements in each pair, swap so that smallest first, repeat

def bubble_sort(L):
swap = True
while swap:
swap = False
for i in range(len(L)): # Pass through pairs
if L[i] > L[i+1]: # Compare elements
swap = True
L[i], L[i+1] = L[i+1], L[il]

At each pass, largest unsorted element gets bubbled up to the end,
so at most n passes in while loop => Algorithm Complexity: O(n?)

DS-GA 1007 | Lecture 3

Sorting Algorithm: MergeSort

MergeSort: Recursively split into half sublists, then sort
sublists while merging them back together

def merge_sort(L):

if len(L) < 2:
return L[:]

else:
middle = len(L)//2
left = merge_sort(L[:middle])
right = merge_sort(L[middle:])
return merge(left, right)

DS-GA 1007 | Lecture 3

Fastest version (optional for this course)

MergeSort: Version less easy to read than on previous
slide, but fastest (doesn’t copy sublists)

def merge_sort(L,1,h): # Start with 1=1, h=len(L)
if h == 1.
return L[1-1]
else:
mid = (1 + h)//2
left = merge_sort(L,1l,mid)
right = merge_sort(L,mid+1,h)
return merge(left, right)

Algorithm Complexity: O(logn) x ?

DS-GA 1007 | Lecture 3

Merge Sorted Sublists

def merge(left, right):
result = [1; i,j = 0,0
while i < len(left) and j < len(right):
if left[i] < right[j]:
result.append(left[i])
i+=1
else:
result.append(right[j])
g1
while (i < len(left)):
result.append(left[i])
i+=1
while (j < len(right)):
result.append(right[j])
j+=1 Algorithm Complexity: O(n)

return result DS-GA 1007 | Lecture 3

Sorting Algorithm: MergeSort

Divide and Conquer: O(n log n)

» Divide using merge_sort(): O(log n)
Divide lists into halves until each sublist contains only 1
element (which by definition are sorted) creates log(n)
recursion levels => O(log n) operations

» Conquer using merge(): O(n)
At each recursion level, sorting pairs of sorted sublists is linear
in number of elements (which is 2/ x 3 = n) because smallest
elements are always the first elements. Copying (merging) each
element takes exactly n operations => O(n) + n operations

DS-GA 1007 | Lecture 3

Sorting Algorithms: In a Nutshell

We looked at:

1. Monkey sort: O(0)
Relies on randomness, potentially unbounded

2. Selection sort: O(n?)
Guarantees first i elements are sorted

3. Bubble sort: O(n?)
Guarantees last i elements are sorted & entire list
gets overall more sorted at every step

4. Merge sort: O(n log n)
The fastest a sort can be...

DS-GA 1007 | Lecture 3

Sorting Algorithms: In a Movie

DS-GA 1007 | Lecture 3

https://www.youtube.com/embed/t8g-iYGHpEA
https://youtu.be/vmT3XUBoxiQ

Thank you!

	Program Efficiency
	Program Run Time and Algorithmic Complexity

	title

