
DS-GA 1007 | Lecture 3
Programming for Data Science

Jeremy Curuksu, PhD
NYU Center for Data Science
jeremy.cur@nyu.edu

September 25, 2023



Program Efficiency



DS-GA 1007 Curriculum

Programming for Data Science:
▶ Introduction to Programming in Python
▶ Best Practice Programming and Software Engineering
▶ Program Efficiency
▶ Interacting with Programs
▶ Array Manipulation for Scientific Computing
▶ Data Visualization
▶ Advanced Data Objects (×4)
▶ Environments for Collaborative Programming
▶ Industrial Applications

DS-GA 1007 | Lecture 3



Program Efficiency

Last week:
▶ Modularization and Abstraction
▶ Functions and Objects in Python
▶ Testing and Debugging Programs

Today:
▶ Program Run Time and Algorithmic Complexity
▶ Examples of Iterative and Recursive Algorithms
▶ Examples of Search and Sort Algorithms

DS-GA 1007 | Lecture 3



Program Run Time and
Algorithmic Complexity

DS-GA 1007 | Lecture 3



What is Program Efficiency?

How to compare the efficiency of two different programs?

DS-GA 1007 | Lecture 3



What is Program Efficiency?

How to compare the efficiency of two different programs?

▶ How to measure the efficiency of an algorithm independent of
machine or specific implemention?

DS-GA 1007 | Lecture 3



What is Program Efficiency?

How to compare the efficiency of two different programs?

▶ How to measure the efficiency of an algorithm independent of
machine or specific implemention?

▶ How to reason about an algorithm to predict the amount of
time it will need to solve a problem of a particular size?

DS-GA 1007 | Lecture 3



What is Program Efficiency?

How to compare the efficiency of two different programs?

▶ How to measure the efficiency of an algorithm independent of
machine or specific implemention?

▶ How to reason about an algorithm to predict the amount of
time it will need to solve a problem of a particular size?

▶ How to relate choices in algorithm design to time efficiency?

DS-GA 1007 | Lecture 3



What is Program Efficiency?

How to compare the efficiency of two different programs?

▶ How to measure the efficiency of an algorithm independent of
machine or specific implemention?

▶ How to reason about an algorithm to predict the amount of
time it will need to solve a problem of a particular size?

▶ How to relate choices in algorithm design to time efficiency?

Example of algorithm to compute n2:
def square(n):

n2 = 0

for i in range(n):

for j in range(n):

n2 += 1

return n2

Isn’t there a more efficient way?

DS-GA 1007 | Lecture 3



Measures of a program’s efficiency

Some options:

1. Measure the run time with a timer

2. Count the number of operations

3. Measure an order of growth as function of
input size

DS-GA 1007 | Lecture 3



Measure the run time of a program
Measure clock time on test data
✓ Run time varies between different algorithms
× Run time varies between implementations
× Run time varies between computers
× Run time for large inputs not predictable based on small inputs

Example:
import time

t0 = time.time()

fact = 1

for i in range(1,1000):

fact *= i

dt = time.time() - t0

print("Run time: {} seconds".format(dt))

DS-GA 1007 | Lecture 3



Example of run time measurement

Measure run time with %timeit∗

%timeit L = [n**2 for n in range(1000)]

Output:
148 µs ± 64 ns per loop (mean ± std dev of 7 runs, 10,000 loops each)

%timeit L = [square(n) for n in range(1000)]

Output:
7.34 s ± 60.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

∗Details on Python magic commands:
jakevdp.github.io/PythonDataScienceHandbook/01.03-magic-commands.html

DS-GA 1007 | Lecture 3

https://jakevdp.github.io/PythonDataScienceHandbook/01.03-magic-commands.html


Counting Operations in a Program

Count number of operations as function of input size:

✓ #ops varies between different algorithms
× #ops varies between implementations
✓ #ops does not vary between computers
✓ #ops for large inputs is predictable based on small inputs
× No clear definition of which operations to count

Example:
def factorial(n):

fact = 1

for i in range(1,n+1):

fact *= i

return fact

1 ops
1 ops
2 ops
=> 1 + 3n ops

DS-GA 1007 | Lecture 3



Generalization: Order of Growth

Count number of key operations in term of input size

▶ #ops: Measures an algorithm’s run time in term of input size
but does not measure scalability to arbitrarily large input size

▶ Asymptotic Growth: We need measure scalability to arbitrarily
large input size, independent of specific implementation

▶ Focus on Dominant Terms: We need measure an invariant
order of magnitude based on largest factors/bottlenecks

▶ Lower/Upper Bound: We can measure the average, best or
worst case over all possible inputs of a given size

DS-GA 1007 | Lecture 3



O() as Order of Growth of a Program

Upper Bound Asymptotic Growth relative to input size:

✓ O() varies between algorithms, not implementations
✓ O() measures rate of growth of run time as input size grows
✓ O() is a tight upper bound on order of magnitude growth

Example:

def factorial(n):

fact = 1

for i in range(1,n+1):

fact *= i

return fact

1 ops
1 ops
2 ops
=> 1 + 3n ops

Ignore additive constants => 3n and multiplicative constants => n
Worst case asymptotic complexity = O(n)

DS-GA 1007 | Lecture 3



Analyzing Complexity of a Program

Order of Growth of a Program O():
▶ Rule 1: Focus on dominant terms inside statements: Drop

additive factors and multiplicative constants

Examples:

▶ 1 + 3n has worst case complexity of O(n)

▶ 2 + 2n+ n2 has worst case complexity of O(n2)

▶ 10000 + 1000000n+ n2 has worst case complexity of O(n2)

▶ n5 + 5n has worst case complexity of O(5n)

DS-GA 1007 | Lecture 3



Analyzing Complexity of a Program

Order of Growth of a Program O():
▶ Rule 2: Use the law of addition for sequential statements: Just

add up orders of growth between consecutive operations
O(f (n) + g(n)) = O(f (n)) + O(g(n))

Example:
for i in range(n):

print(i)

for j in range(n*n):

print(j)

▶ The first for loop has worst case complexity of O(n)
▶ The second for loop has worst case complexity of O(n2)

▶ Worst case complexity => O(n) + O(n2) = O(n2)
DS-GA 1007 | Lecture 3



Analyzing Complexity of a Program

Order of Growth of a Program O():
▶ Rule 3: Use the law of multiplication for nested statements:

Multiply orders of growth between nested loops because an
inner loop is repeated for each outer loop iteration
O(f (n)× g(n)) = O(f (n))× O(g(n))

Example:
for i in range(n):

for j in range(n):

print(i,j)

▶ The first for loop has worst case complexity of O(n)
▶ The second for loop has worst case complexity of O(n)
▶ Worst case complexity => O(n)× O(n) = O(n2)

DS-GA 1007 | Lecture 3



Map of Algorithmic Complexities
O() relates choices in algorithm design to time efficiency. The goal
of the programmer is to write algorithms that go up in the map

DS-GA 1007 | Lecture 3



Map of Algorithmic Complexities

DS-GA 1007 | Lecture 3



Examples of Algorithm
Complexity Analysis

DS-GA 1007 | Lecture 3



Algorithm Complexity Analysis: x2

Example of iterative nested loop to calculate x2:

def square(x):

x2 = 0

for i in range(x):

for j in range(x):

x2 += 1

return x2 Algorithm Complexity: O(n2)

DS-GA 1007 | Lecture 3



Algorithm Complexity Analysis: x2

Example of recursive function to calculate x2

(x − 1)2 = x2 − 2x + 1
<=> x2 = (x − 1)2 + 2x − 1

def square(x):

if x == 0:

return x

else:

return (square(x-1) + 2*x - 1)

Algorithm Complexity: O(n)

DS-GA 1007 | Lecture 3



Algorithm Complexity Analysis: !x

Example of iterative loop to calculate !x:

def factorial(x):

fact = 1

for i in range(1,x+1):

fact *= i

return fact Algorithm Complexity: O(n)

DS-GA 1007 | Lecture 3



Algorithm Complexity Analysis: !x

Example of recursive function to calculate !x

def factorial(x):

if x <= 1:

return 1

else:

fact = x * factorial(x-1)

return fact

Algorithm Complexity: O(n)

DS-GA 1007 | Lecture 3



Search and Sort
Algorithms

DS-GA 1007 | Lecture 3



Linear Search of Element in List

Linear Search: Unsorted List

def search(L,e):

found = False

for i in range(len(L)):

if L[i] == e:

found = True

return found Algorithm Complexity: O(n)
(due to worst case scenarios)

DS-GA 1007 | Lecture 3



Linear Search of Element in List

Linear Search: Sorted List

def search(L, e):

for i in range(len(L)):

if L[i] == e:

return True

if L[i] > e:

return False

return False Algorithm Complexity: O(n)
(due to worst case scenarios)

DS-GA 1007 | Lecture 3



Recursive Search of Element in List

Bisection Search

Search complete when
n
2i = 1 <=> i = log n

Complexity: O(log n)

▶ Pick index that divides list
in half, test if L[m] == e. If
not, test if L[m] is larger or
smaller than e. Then,
depending on the answer,
search left or right half of L

▶ Bisection is a divide-and-
conquer algorithm: Break
original problem in smaller
versions of the problem
(smaller lists)

DS-GA 1007 | Lecture 3



Recursive Search of Element in List
Bisection Search: Sorted List∗

def bisection_search(L,e,low,high):

if high == low:

return L[low] == e

mid = (low + high)//2

if L[mid] == e:

return True

elif L[mid] > e:

if low == mid: # Nothing left to search

return False

else:

return bisection_search(L,e,low,mid - 1)

else:

return bisection_search(L,e,mid + 1,high) *Sorting required

Algorithm Complexity: O(log n)

DS-GA 1007 | Lecture 3



Recursive Search of Element in List

Bisection Search is Faster for Large Lists

DS-GA 1007 | Lecture 3



Sorting Algorithms

Is it Better to Sort before Searching?

▶ Never True for Single Search: Sorting a collection of elements
requires to look at each one at least once

▶ Amortize Cost: Sort becomes beneficial for multiple searches:
sort list once, then do many searches

▶ Algorithmic Complexity of k searches:
O(sort) + k× O(log n) < k× O(n) ?
=> When k is large, run time for sort may become irrelevant
relative to run time for search

DS-GA 1007 | Lecture 3



Sorting Algorithm: MonkeySort

MonkeySort: Randomly shuffle, repeat until sorted

def monkey_sort(L):

while not is_sorted(L):

random.shuffle(L)

Algorithm Complexity:

▶ Best case: O(n)

▶ Worst case: O(∞)

DS-GA 1007 | Lecture 3



Sorting Algorithm: SelectionSort

SelectionSort: For each index i in list, loop from i to end
of list, find lowest element, swap with element at index i

def selection_sort(L):

for i in range(len(L)):

min_i = i

for j in range(i+1, len(L)):

if L[j] < L[min_i]:

min_i = j

L[i], L[min_i] = L[min_i], L[i]

Algorithm Complexity: O(n2)

DS-GA 1007 | Lecture 3



Sorting Algorithm: BubbleSort
BubbleSort: Pass through pairs of elements, compare
elements in each pair, swap so that smallest first, repeat

def bubble_sort(L):

swap = True

while swap:

swap = False

for i in range(len(L)): # Pass through pairs

if L[i] > L[i+1]: # Compare elements

swap = True

L[i], L[i+1] = L[i+1], L[i]

At each pass, largest unsorted element gets bubbled up to the end,
so at most n passes in while loop => Algorithm Complexity: O(n2)

DS-GA 1007 | Lecture 3



Sorting Algorithm: MergeSort

MergeSort: Recursively split into half sublists, then sort
sublists while merging them back together

def merge_sort(L):

if len(L) < 2:

return L[:]

else:

middle = len(L)//2

left = merge_sort(L[:middle])

right = merge_sort(L[middle:])

return merge(left, right)

DS-GA 1007 | Lecture 3



Fastest version (optional for this course)

MergeSort: Version less easy to read than on previous
slide, but fastest (doesn’t copy sublists)

def merge_sort(L,l,h): # Start with l=1, h=len(L)

if h == l:

return L[l-1]

else:

mid = (l + h)//2

left = merge_sort(L,l,mid)

right = merge_sort(L,mid+1,h)

return merge(left, right)

Algorithm Complexity: O(log n)× ?
DS-GA 1007 | Lecture 3



Merge Sorted Sublists
def merge(left, right):

result = []; i,j = 0,0

while i < len(left) and j < len(right):

if left[i] < right[j]:

result.append(left[i])

i += 1

else:

result.append(right[j])

j += 1

while (i < len(left)):

result.append(left[i])

i += 1

while (j < len(right)):

result.append(right[j])

j += 1

return result

Algorithm Complexity: O(n)
DS-GA 1007 | Lecture 3



Sorting Algorithm: MergeSort

Divide and Conquer: O(n logn)

▶ Divide usingmerge sort(): O(log n)
Divide lists into halves until each sublist contains only 1
element (which by definition are sorted) creates log(n)
recursion levels => O(log n) operations

▶ Conquer usingmerge(): O(n)
At each recursion level, sorting pairs of sorted sublists is linear
in number of elements (which is 2i × n

2i = n) because smallest
elements are always the first elements. Copying (merging) each
element takes exactly n operations => O(n) + n operations

DS-GA 1007 | Lecture 3



Sorting Algorithms: In a Nutshell

We looked at:
1. Monkey sort: O(∞)

Relies on randomness, potentially unbounded

2. Selection sort: O(n2)

Guarantees first i elements are sorted

3. Bubble sort: O(n2)

Guarantees last i elements are sorted & entire list
gets overall more sorted at every step

4. Merge sort: O(n logn)
The fastest a sort can be...

DS-GA 1007 | Lecture 3



Sorting Algorithms: In a Movie

DS-GA 1007 | Lecture 3

https://www.youtube.com/embed/t8g-iYGHpEA
https://youtu.be/vmT3XUBoxiQ


Thank you!

DS-GA 1007 | Lecture 3


	Program Efficiency
	Program Run Time and Algorithmic Complexity

	title

