
DS-GA 1007 | Lecture 2
Programming for Data Science

Jeremy Curuksu, PhD
NYU Center for Data Science
jeremy.cur@nyu.edu

November 7, 2023

Best Practice
Programming in Python

DS-GA 1007 Curriculum

Programming for Data Science:
▶ Introduction to Programming in Python
▶ Best Practice Programming and Software Engineering
▶ Program Efficiency
▶ Interacting with Programs
▶ Array Manipulation for Scientific Computing
▶ Data Visualization
▶ Advanced Data Objects (×4)
▶ Environments for Collaborative Programming
▶ Industrial Applications

DS-GA 1007 | Lecture 2

Best Practice Programming in Python

Last week:
▶ What is programming?
▶ Primitive Data Types and Control Flow
▶ Compound Data Types: Tuples, Lists, Dictionaries

Today:
▶ Modularization and Abstraction
▶ Functions and Objects in Python
▶ Testing and Debugging Programs

DS-GA 1007 | Lecture 2

Modularization and
Abstraction

DS-GA 1007 | Lecture 2

Programming Best Practices

▶ Measured by amount of functionality, not volume

▶ Modularization: Decompose code in self-contained
modules to keep code organized and coherent

▶ Abstraction: Define modules as functions or objects
which can be reused. Leverage preexisting modules,
either built-in or imported (NumPy, Pandas, ...)

▶ Document each module (input, output, properties)

▶ Test and debug modules individually, pre-emptively

DS-GA 1007 | Lecture 2

Functions in Python

DS-GA 1007 | Lecture 2

Decomposition with Functions

▶ Decompose to create structure: Functions should be
self-contained and reusable

▶ Abstract to suppress details: Function should come
with specifications or docstrings. A function can
then be used as a black box: no need to see details

▶ Functions are not run until they are invoked
▶ Functions have:

▶ A name
▶ A body
▶ A docstring (optional)
▶ Input parameters (optional)
▶ Returns outputs (optional)

DS-GA 1007 | Lecture 2

Decomposition with Functions

Function
def <function name>(<parameters>):

""" DocString """

<body>

return <output>

Example:
def testeven(i):

""" Input: A positive integer number

Output: True if number is even, False if odd

"""

print("Executing test even for i = {}".format(i))

return i%2 == 0

DS-GA 1007 | Lecture 2

Scope of Variables in Functions

▶ Scope: A new ”local” scope for variable names is created
when the program enters a function

▶ Local Scope:
▶ Variables defined inside a function are not defined

outside the function
▶ Values fetched to function parameters get bound to

local variable names when the function is invoked

▶ Global Scope:
▶ Variables defined outside can be accessed inside

(”visible everywhere”)
▶ Variables defined outside cannot be modified inside

DS-GA 1007 | Lecture 2

Local Variables in Functions

def f(x):

"""Return square of a number"""

x = x**2

return x

y = 10

f(y)

print(y) Output: ?

DS-GA 1007 | Lecture 2

Local Variables in Functions

def f(x):

"""Return square of a number"""

x = x**2

return x

y = 10

f(y)

print(y) Output: 10

DS-GA 1007 | Lecture 2

Local Variables in Functions

def f(x):

"""Return square of a number"""

x = x**2

return x

x = 10

f(x)

print(x) Output: ?

DS-GA 1007 | Lecture 2

Local Variables in Functions

def f(x):

"""Return square of a number"""

x = x**2

return x

x = 10

f(x)

print(x) Output: 10

DS-GA 1007 | Lecture 2

Local Variables in Functions

def f(x):

"""Return square of a number"""

x = x**2

return x

x = 10

x = f(10)

print(x) Output: 100

DS-GA 1007 | Lecture 2

Local Variables in Functions

def f(x):

"""Return square of a number"""

x = x**2

return x

x = 10

x = f(x)

print(x) Output: 100

DS-GA 1007 | Lecture 2

Global Variables in Functions

def f(x):

x = x**2

x = x + y

return x

y = 10

x = f(10)

print('x = {}, y = {}'.format(x,y))

Output: x = 110, y = 10
DS-GA 1007 | Lecture 2

Global Variables in Functions

def f(x):

"""Return square of a number"""

y = x**2

return y

y = 10

x = f(10)

print('x = {}, y = {}'.format(x,y))

Output: x = 100, y = 10
DS-GA 1007 | Lecture 2

Global Variables in Functions

def f(x):

x = x**2 + y

y = x

return y

y = 10

x = f(10)

print('x = {}, y = {}'.format(x,y))

Output: UnboundLocalError
DS-GA 1007 | Lecture 2

Input and Ouput to Functions

Input: parameters

▶ Optional, from 0 to 256

▶ Can be any data type fit to
operations happening
inside the function

▶ Can be other functions

▶ Can be value or existing
global variable name

▶ Global variables input as
parameters get reassigned
to local variable names

Output: return or print

▶ Optional

▶ Can use only 1 return with
only 1 value per function,
but can be any data type

▶ Can use as many print
statements as desired

▶ If no return given, Python
returns the value None

▶ Global variables are not
impacted inside functions

DS-GA 1007 | Lecture 2

Objects in Python

DS-GA 1007 | Lecture 2

Decomposition with Objects

What are Objects?

▶ Objects are data abstraction. An object is a collection of:
▶ Data Attributes: Internal representation of the

object (equivalent to data variables)
▶ Methods: Interface for interacting with the object

(equivalent to functions)

▶ Objects are instances of a class
▶ Class statements are blueprints to create objects
▶ Once an object is created, its attributes and

methods are accessed by the dot operator:
objectname.attributename()

DS-GA 1007 | Lecture 2

Decomposition with Objects

Object
class name(<superclass>):

""" DocString """

<body>

Example:
Define new type of object: Use the object:
class dog(animal): fido = dog() # Create instance

speed = 30 print(fido.domesticated)

race = 'Not specified' fido.speed = 20

domesticated = True fido.race = 'Schnauzer'

fido.cuteness = 'XXL'

DS-GA 1007 | Lecture 2

Object Oriented Programming (OOP)

Advantages of OOP for Data Science

▶ Create new types (=classes) of data objects
▶ Create your own data types with custom attributes
▶ Bundle together objects of common attributes

▶ Modularization => Divid & Conquer code development
▶ Implement and test behavior of each class separately
▶ Access attributes and methods consistently using the dot

operator: No collision on variable and function names

▶ Abstraction => Easy to reuse code
▶ Separate implementation of defining vs. using an object
▶ Inheritance: Build layers of object abstractions that

inherit behaviors from other classes of objects

DS-GA 1007 | Lecture 2

Object Oriented Programming (OOP)

DS-GA 1007 | Lecture 2

Attributes and Methods of Objects

Attributes and Methods are accessed by the “.” operator

▶ Data Attributes
▶ Data objects that make up the class
▶ ”What it is”
Example: Class coordinate made up of two numbers

▶ Methods (Procedural Attributes)
▶ Functions that only work with this class
▶ ”What it does”
Example: Class coordinate with a method to compute
the distance between two coordinate objects

DS-GA 1007 | Lecture 2

Methods of Object
Defining and Invoking Methods
▶ When creating a method, the first argument passed to it (called

self) must be the object itself
▶ Invoke the method with ”.” and Python automatically fills in self
▶ Other than self and ”.”, methods behave exactly like functions

Define new type of object: Use the object:
class coordinate(object): p1 = coordinate()

x = 0.1 p2 = coordinate()

y = 0.1 p1.x = 0.8

def distance(self,other): p1.y = 0.2

dx2 = (x-other.x)**2 d = p1.distance(p2)

dy2 = (y-other.y)**2 print('Distance: ',d)

return (dx2 + dy2)**0.5

DS-GA 1007 | Lecture 2

The Object Initialization Method

The init Method
▶ A special method called init can be created inside the

class to initialize data attributes

▶ Python automatically calls init when creating an object

▶ Out of scope for this course: Implement set and get methods
to access all data attributes of an object

Define new type of object: Use the object:
class coordinate(object): p1 = coordinate(0.8,0.2)

def __init__(self,a,b): p2 = coordinate(0.5,0.5)

self.x = a d = p1.distance(p2)

self.y = b print('Distance: ',d)

DS-GA 1007 | Lecture 2

Example of New Data Object

class coordinate(object):

def __init__(self,a=0.1,b=0.1):

self.x = a

self.y = b

def distance(self, other):

dx2 = (self.x-other.x)**2

dy2 = (self.y-other.y)**2

return (dx2 + dy2)**0.5

p1 = coordinate(0.8,0.2)

p2 = coordinate(0.5,0.5)

d = p1.distance(p2)

print('Distance: ',d)

DS-GA 1007 | Lecture 2

Inheritance of Object Types
▶ Parent class = Superclass

▶ In Python all classes derive from a superclass

DS-GA 1007 | Lecture 2

Inheritance of Object Types
▶ Parent class = Superclass

▶ In Python all classes derive from the parent class Object

▶ Child class = Subclass
▶ Inherits all data and behaviors from parent class
▶ Add more information and more behavior
▶ Override behavior

DS-GA 1007 | Lecture 2

Inheritance of Object Types
▶ For any data object in Python, you have access to methods in

current class definition and up the hierarchy

▶ You can only use the first method up the hierarchy with that
method name: A class may have method with same name as in
superclass, but it overrides inherited method with same name

DS-GA 1007 | Lecture 2

Testing and Debugging
Programs

DS-GA 1007 | Lecture 2

Testing and Debugging Programs

▶ Defensive Programming:
▶ Modularization: Break up programs into modules

(functions, objects) and leverage pre-existing modules

▶ Abstraction: Document specification for each module
(expected input-output, assumptions on code design)

▶ Test and debug modules individually:
▶ Test: Identify where and when errors happen

▶ Debug: Understand and solve errors

▶ Pre-emptively... Implement handles to raise exceptions
and assert module specifications

DS-GA 1007 | Lecture 2

Testing Programs

Testing = Identifying where and when errors happen

▶ What to test?
▶ Unit test: Test/validate each piece of program separately
▶ Regression test: Add test for bugs as you find them
▶ Integration test: Ensure overall program runs

▶ How to test?
▶ Intuitive or Random test: Explore possible inputs and test

cases randomly or based on intuition
▶ Black Box test: Explore test cases through specification
▶ Glass Box test: Explore test cases through code

DS-GA 1007 | Lecture 2

Black Box Testing

Design test cases without looking at code

▶ Only use specification to define typical values and edge cases

▶ Can be reused if implementation changes

▶ Can be done by someone other than the implementer

Example: How would you test this function?

def topgrade(l):

'''Read list of grades and return highest one'''

top = l[0]

for r in l[1:]:

if r > top: top = r

return top

DS-GA 1007 | Lecture 2

Glass Box Testing

Design test cases based on the code
▶ Use code to test all possible branchings, loops, etc

▶ A program is called path-complete if every potential scenario
through code has been tested at least once

▶ Can run loops arbitrarily many times yet miss key scenarios

Example: How would you test this function?

def topgrade(l):

'''Read list of grades and return highest one'''

top = l[0]

for r in l[1:]:

if r > top: top = r

return top

DS-GA 1007 | Lecture 2

Debugging Programs

Debugging = Understanding and solving errors

▶ The scientific method:
▶ Study code and data to form hypotheses on origin of bug

▶ Use repeatable experiments

▶ The tools:
▶ Built-in Python editors and interpreters

▶ Print statements to test hypotheses. Quickly locate bugs
with prints at begin/end of functions (or use bisection)

▶ Systematic: Make change, compare new vs. old, deduce, ...

DS-GA 1007 | Lecture 2

Common Errors in Python

l = ['a','b','c'] ▶ ?

DS-GA 1007 | Lecture 2

Common Errors in Python

l = ['a','b','c']

l[3] ▶ ?

DS-GA 1007 | Lecture 2

Common Errors in Python

l = ['a','b','c']

l[3]

int(l)

▶ IndexError: E.g., Trying to access
beyond the limits of a list

▶ ?

DS-GA 1007 | Lecture 2

Common Errors in Python

l = ['a','b','c']

l[3]

int(l)

▶ IndexError: E.g., Trying to access
beyond the limits of a list

▶ TypeError: E.g., Trying to convert
an inappropriate type (list > int)

DS-GA 1007 | Lecture 2

Common Errors in Python

l = ['a','b','c']

l[3]

int(l)

l[2]/4

▶ IndexError: E.g., Trying to access
beyond the limits of a list

▶ ?

DS-GA 1007 | Lecture 2

Common Errors in Python

l = ['a','b','c']

l[3]

int(l)

l[2]/4

c/4

▶ IndexError: E.g., Trying to access
beyond the limits of a list

▶ TypeError: E.g., Trying to convert
an inappropriate type, mixing
inappropriate data types, etc

▶ ?

DS-GA 1007 | Lecture 2

Common Errors in Python

l = ['a','b','c']

l[3]

int(l)

l[2]/4

c/4

len(['a','b','c']

▶ IndexError: E.g., Trying to access
beyond the limits of a list

▶ TypeError: E.g., Trying to convert
an inappropriate type, mixing
inappropriate data types, etc

▶ NameError: E.g., Referencing a
non-existent variable

▶ ?

DS-GA 1007 | Lecture 2

Common Errors in Python

l = ['a','b','c']

l[3]

int(l)

l[2]/4

c/4

len(['a','b','c']

open('c.dat')

▶ IndexError: E.g., Trying to access
beyond the limits of a list

▶ TypeError: E.g., Trying to convert
an inappropriate type, mixing
inappropriate data types, etc

▶ NameError: E.g., Referencing a
non-existent variable

▶ SyntaxError: E.g., Forgetting to
close parenthesis, quotation, etc

▶ ?

DS-GA 1007 | Lecture 2

Common Errors in Python

l = ['a','b','c']

l[3]

int(l)

l[2]/4

c/4

len(['a','b','c']

open('c.dat')

▶ IndexError: E.g., Trying to access
beyond the limits of a list

▶ TypeError: E.g., Trying to convert
an inappropriate type, mixing
inappropriate data types, etc

▶ NameError: E.g., Referencing a
non-existent variable

▶ SyntaxError: E.g., Forgetting to
close parenthesis, quotation, etc

▶ IOError: File not found

DS-GA 1007 | Lecture 2

Pre-emptively Handling Errors

Exception Handlers
try/except/raise: Try a block of code, if execution hits unexpected
condition, handle this exception with specific instructions, or raise
an error which stops execution

Example:
def squareroot(x):

try:

return(math.sqrt(x))

except ValueError:

print("Warning: Input is not positive")

return(math.sqrt(-x))

except:

raise TypeError("Stopped: Input is not a number")

DS-GA 1007 | Lecture 2

Pre-emptively Handling Errors

Assertion Handlers
assert: Stop execution and raise error if assumptions are not met.
This pre-emptively locates sources of bugs as soon as introduced
and avoid propagating them (defensive programming)

Example:
def ratio(x,y):

assert y != 0,'Denominator of ratio is zero'

return x/y

DS-GA 1007 | Lecture 2

Thank you!

DS-GA 1007 | Lecture 2

	Best Practice Programming in Python
	Modularization and Abstraction

