DS-GA 1007 | Lecture 1

Programming for Data Science

Jeremy Curuksu, PhD
NYU Center for Data Science
jeremy.cur@nyu.edu

September 11, 2023

Week 1

1. Course Information

2. Introduction to Programming in Python

DS-GA 1007 | Lecture 1

Course Information

DS-GA 1007 Instructional Team

Instructor:

» Dr. Jeremy Curuksu, jeremy.cur@nyu.edu

Section Leaders and Graders:

» Jiayue (Hailey) He, jh8530@nyu.edu
» Shivam Ahuja, sa7445@Qnyu.edu
» Anudeep Tubati, at5373@Qnyu.edu

DS-GA 1007 | Lecture 1

DS-GA 1007 Schedule

DS-GA 1007.001 Lecture:

» Mondays from 6:45pm-8:30pm EST
» Location: 12 Waverly Place, Room Go8

DS-GA 1007.002 Lab:

» Wednesdays from 7:10pm-8:00pm EST
» Location: 19 University Place, Room 102

DS-GA 1007 | Lecture 1

DS-GA 1007 Curriculum

Programming for Data Science:

| 2

vV VvV V.V vV vV VY

Introduction to Programming in Python

Best Practice Programming and Software Engineering
Program Efficiency

Interacting with Programs

NumPy: Array Manipulation for Scientific Computing
Matplotlib: Data Visualization

Pandas: Advanced Data Objects (x4)

Git: Environment for Collaborative Programming

Industrial Applications

DS-GA 1007 | Lecture 1

DS-GA 1007 Resources

>

>

>

Lecture and lab practice code + lecture slides
Python Data Science Handbook (2017) by Jake VanderPlas

The Carpentries intro labs on Python, Linux and Git
(software—carpentry .org/lessons/index. html)

Python for Data Science (2022) by Yuli Vasiliev
The Linux Command Line (2019) by William Shotts

Python packages used in this course have online concise
high-quality doc: NumPy, Pandas, Matplotlib

DS-GA 1007 | Lecture 1

software-carpentry.org/lessons/index.html
https://numpy.org/doc/
https://pandas.pydata.org/docs/
https://matplotlib.org/stable/index.html

Advices to Succeed in this Course

> Attend both lectures and labs. Lectures and labs
complement each other to set you up for success

» Practice, practice, practice. Programming is a skillset,
everyone has a unique approach, find your own!

» Before writing a program, define its goal and data flows

» Break up problems into sub-problems. Break your
program up into modules that can be tested individually

» Document your programs. We all forget important details

» Ask questions!

DS-GA 1007 | Lecture 1

Introduction to
Programming in Python

Introduction to Programming in Python

Today topics:
» What is Programming?
Why Programming in Data Science?
Primitive Data Types
Control Flow
Compound Data Types: Tuples, Lists, Dictionaries, ...

Manipulating Compound Data Types

vV v v v v VY

Reading/Writing Files and Examples

DS-GA 1007 | Lecture 1

What is Programming?

What do Computers do?

DS-GA 1007 | Lecture 1

What do Computers do?

» Perform calculations

» Fixed program computers
» Stored program computers

DS-GA 1007 | Lecture 1

What do Computers do?

» Perform calculations

» Fixed program computers
» Stored program computers

» Store knowledge

» Declarative knowledge (statements of facts)
» Imperative knowledge (programs)

DS-GA 1007 | Lecture 1

What do Computers do?

Architecture of stored program computers

¥ 4+

Control Unit Logic Unit

Central Processmg Unit

DS-GA 1007 | Lecture 1

What is a Program?

» Represent knowledge with data structures:

1. Primitive data types
2. Compound data types

» Encode an algorithm:

1. Instructions = Sequence of simple steps (commands)
2. Flow of control = Specifies when each step executed
3. Termination condition = Determine when to stop

DS-GA 1007 | Lecture 1

Why Programming for Data Science?

Feature Engineering Data Manipulation Scientific Computing

a—

DS-GA 1007 | Lecture 1

Creating a Program

» All instructions in a program are built from a set of
primitive instructions

» Arithmetic and logic operations
» Tests to change flow of control
» Data transfers

» A programming language offers a set of primitives
Anything computable in one language is computable in
any other programming language

» A special program 'interpreter’ executes instructions

DS-GA 1007 | Lecture 1

Creating a Program in Python

» Data structure definition: Evaluated by interpreter
» Command: Instruct the interpreter to do something

» Data & commands can be typed interactively into a
console, or stored to file to be read later in batch

> Example:

Define the data

data = "DS-GA 1007"

Print the data
print("Welcome to " + data)

DS-GA 1007 | Lecture 1

Syntax and Semantics of Languages

In English In Python

(Natural Language) (Programming Language)
Primitives Words Numbers, Strings, Operators
Syntax Valid: She likes running Valid: 5+ 10

Invalid: She running likes Invalid: 5 =10
Static- Valid: | like pizzas Valid: "hi " + "5"
Semantics Invalid: Pizzas like me Invalid: "hi " + 5
Semantics He likes her X=—9 X X+ 50

DS-GA 1007 | Lecture 1

Syntax and Semantics of Languages

» Syntax errors: Common and easily caught by editor
and interpreter

» Static Semantic errors: Often but not always caught
by the interpreter, can cause unpredictable behavior

» Semantic errors: Frequent source of problem:
program crashes, runs forever, or gives an answer
but different than expected

DS-GA 1007 | Lecture 1

Primitive Data Types
in Python

Why Python?

Pyton

sa

3

savascrivt [6% 20 19% 3%
HTMLCSS % 2% 2 £

o a 10% 19% 15 a9
Typescriot [N 7% 12% 7%

PHp

Rust

Juia

o

Poll on 4,200 data scientists from 140 countries
Source (2021): anaconda.com

Ratings (%)

Python
Jave, ——
JavaScript [—
oo —
o
¢ E—
Typescript | —
perl [JE—
Ruby [—
0 50000 100000 150000 200000
1M US Job Posts 1 European Economic Area Job Posts.
L shown on LinkedIn postings

Source (2022): codingnomads.co

A-«r\\.f\:am TN

T T T T
2002 2004 2008 2008 2010 2012 2014

—Pyhon =G —Cw —Jwa —OCf —davScrpl — VisualBasic — SQL
TIOBE popularity index. Source (2023): tiobe.com

DS-GA 1007 | Lecture 1

T T T T
2016 2018 2020 2022

Assembly language -~ PHP

https://www.anaconda.com/state-of-data-science-2021
https://codingnomads.co/blog/the-best-programming-languages-to-learn/
https://www.tiobe.com/tiobe-index

Python Primitive Data Types

» Programs manipulate data objects

» An object has a type: defines what the program can do to it

Primitive Python Objects

Int Integer Numbers
Float Real Numbers
String Text Contents
Bool Boolean Values
NoneType Special Type

Ex:1,2,3...

Ex: 3.14

Ex: "Hello World!"
True, False

None

DS-GA 1007 | Lecture 1

Expressions and Operators

» Expressions: Combinations of objects and operators. An
expression has a value. A value has a type...

» "Everything in Python is an object”

Primitive Python Operators

Arithmetic Comparison Boolean

= Assignment == Equality not Negation

+ Sum = Inequality and Conjunction
— Difference > More than or Disjunction
x Product >= More or Equal (inclusive)
/ Division < Less than

% Remainder <= Less or Equal

*xx Power

DS-GA 1007 | Lecture 1

Variables and Assignments

» An assignment binds a value to a variable name:
pi = 3.14

» The value is then stored in memory. It can be retrieved by
invoking the variable name:

print (pi)

» A subsequent assignment re-binds the variable to a new value:
pi = 3.14159

» Avariable can be re-bound to expressions operating on itself:

r = 10

area = pi * (r**2)
ncircles = 5

area = area * ncircles

DS-GA 1007 | Lecture 1

Variables and Assignments

» Abstraction of Expressions: A variable name assigned to the
value of an expression can be used instead of the value itself
to write an algorithm as a function of input parameters

import sys

from sklearn.metrics import confusion_matrix
actuals, predictions = sys.argv[1]

m = confusion_matrix(actuals, predictions)

TP = m[1,1]
FN = m[1,0]
TP = TP / (TP + FN)# Proportion
TP = int (TP * 100) # Percentage

print ("The recall is {}%".format(TP))

DS-GA 1007 | Lecture 1

Control Flow
in Python

Control Flow: Branching, Iteration

» Evaluate a block of code if a condition is True.
<condition> evaluates to a Boolean (True or False)

Branching Iteration
if <condition>: while <condition>:
<expressions> <expressions>

Evaluation repeats until the
condition becomes False

if <condition>:
elif <condition>: for <variable> in <>:

Evaluation repeats for each
value taken by the variable

else:

DS-GA 1007 | Lecture 1

Control Flow: Example of Branching

» Indentation defines blocks of code in Python

if y > 0 and x > O:

print("x
if x == y:

print("x
elif x < y:

print("x
else:

print("x

print ("What

and y are positive numbers")
and y are equal")

is smaller than y")

is larger than y")

else do you want to know?")

DS-GA 1007 | Lecture 1

Control Flow: Example of Iteration

» Execute block of code until condition is false

while x != y:
if x < y:
x=x+1
else:

x=x-1
print("Now x and y are equal")

DS-GA 1007 | Lecture 1

Control Flow: Example of Iteration

» Execute block of code until condition is false

while x != y:
if x < y:
x=x+1
else:
x=x-1

print("Now x and y are equal") ..orare they?

DS-GA 1007 | Lecture 1

Control Flow: Example of Iteration

» Iterate through a preset sequence of objects

> With a While loop
n=20
while n < 10:
print(n)
n=n+1

» Shortcut: The For loop

for n in range(10):

print(n)

DS-GA 1007 | Lecture 1

Creating loops with range

> Create an iterable with range (start, stop, step)
»> Loop until value is stop — 1
> start and step are optional
» Default values are start = 0 and step =1

for n in range(10):

<expressions>

for n in range(5, 10):

<expressions>

for n in range(5, 10, 2):
<expressions>

DS-GA 1007 | Lecture 1

Breaking loops with break

» Exit a loop immediately with break
» Skips remaining expressions in code block
» Exits only the current "innermost” loop

while x != y:

if x < y:
x=x+1

else:
x=x-1

if abs(x - y) < 1:
break

print("Now x and y are equal")

DS-GA 1007 | Lecture 1

Compound Data Types

Compound Data Types: Tuples

» Tuple = Ordered sequence of information accessible by index
» Types of elements can be mixed

» Atuple is immutable: Values cannot be changed

» Atuple is represented with parentheses

t =0 # Create an empty tuple

t = ("NYU",1,2,3) # Create tuple of four elements
len(t) # Evaluates to 4 (number of elements)
t [0] # Evaluates to "NYU"

t[1:3] # Slice tuple, evaluates to (1,2)

t[1] = 4 # Syntaz error

DS-GA 1007 | Lecture 1

Compound Data Types: Lists

» List = Ordered sequence of information accessible by index
» Types of elements can be mixed

» A list is mutable: Values can be changed

> A list is represented with square brackets

1=1] # Create an empty list

1 = ["NYU",1,2,3] # Create list of four elements
len(1) # Evaluates to 4 (number of elements)
1[0] # Evaluates to "NYU"

1[1:3] # Slice list, ewvaluates to [1,2]

1[1] = 4 # 1 is now ["NYU",4,2,3]

DS-GA 1007 | Lecture 1

Compound Data Types: Dictionaries

vV vV v Vv

v

A Dictionary stores information accessible by keys
Keys & values are custom data, not ordered, type can be mixed
Values can be duplicate and of any type

Keys must be unique and of immutable type

A dictionary is represented with curly braces

d = {} # Create an empty dictionary
rates = {'Movie 1':'A+', 'Movie 2':'B', 'Song 1':10}
rates['Movie 1'] # Evaluates to 'A+'

rates['Song 2'] # Key Error

rates['B'] # Key Error

rates['Movie 2'] = 'A+'

DS-GA 1007 | Lecture 1

Tuple and List vs. Dictionary

Tuples and Lists
» Sequence of elements

» Look up elements by an
index

» Indices have an intrinsic
order

» The index is an integer

Dictionaries

>

| 2

Pairs of values and keys

Look up items (values) by
other items (keys)

Keys and values are not
ordered

The key can be any
immutable type

DS-GA 1007 | Lecture 1

Array and Data Frame

Arrays Data Frames
Lecture 5: Array Manipulation Lectures 7 to 10: Advanced
and Scientific Computing Data Objects
> Fixed-typed elements » Multidimensional array
with heterogeneous
> !_ook up.elem.ents by column types
integer indexing
» Missing data (NaNs)
> Scale to large dense
multidimentional data » Labels attached to rows
and columns
» Fast vectorized operations

DS-GA 1007 | Lecture 1

Manipulating Compound
Data Types

Manipulating Objects in Python

Objects have "methods”

>

Everything in Python is an object: Lists are objects, Strings are
objects, Dictionaries are objects, Arrays are objects, ...

Objects have data and methods (covered in Lecture 2)
Methods are invoked by the dot notation: object.method()

Examples:

1.append(x) # Mutates list 1 by appending «
1l.extend([x,y]) # Extends list 1l with z and y
1.popQO # Deletes last element of list 1

Other functions also apply to an object depending on its type

Examples:
len(1) # Returns number of elements in list 1
del(1[0]) # Deletes first element of list 1

DS-GA 1007 | Lecture 1

Operations on Strings

A string is a special type of tuple

» Appending characters and concatenating strings

request = "Give me a"
goal = IlHill + |I5Il
question = request + " " + goal

> Indexing characters: Starts at 0. Last element is at index -1

s = "abcd"

len(s) # Evaluates to 4 (number of characters)
s[0] # Evaluates to "a"

s[-1] # Evaluates to "d"

s[-4] # Evaluates to "a"

s[1:4] # Slice string, evaluates to "bed

s[1] = "e" # Syntaz error

DS-GA 1007 | Lecture 1

Operations on Strings

Slicing

» A string can be sliced using [start:stop:step]

>

>

>

Giving only two numbers means [start:stop]
Default step =1

Fine control possible by keeping colons and ommiting numbers

s = "abcde"

s[1:4] # Evaluates to "bed"

s[0:5:2] # Evaluates to "ace"
s[5:1:-2] # Evaluates to "ec"

s[:] # Same as s[0:len(s):1]

3(Ls g=il]] # Same as s[-1:-(len(s)+1):-1]

DS-GA 1007 | Lecture 1

Operations on String

A string can be converted into a list

» list(s) returns a list where every character is an element
list("abcde") # Returns ["(Z”, "y u’ "C", Ildll, ueuJ

» s.split() splits a string s on a character parameter. It splits on
spaces if called without a parameter

1="Cook or Paint".split(" or ") # Returns ["Cook","Paint"]
1.append("Dance") # Operate on list (covered next slide)

» Lists can be converted back to strings
s.join(l) turns a list L into a string of characters. Characters in s
are added between elements of the list, but s can be empty

" or ".join(l) # Returns "Cook or Patint or Dance"

DS-GA 1007 | Lecture 1

Operations on Lists

Lists are mutable and can be nested

» Appending elements and concatenating lists
1 = ["Cook","Paint"]; p = ["Run","Swim"]

Ip=1+p # lp:["Cook", "Paint", "Run", "Swim"]
p-append("Dance") # p:["Run","Swim", "Dance"]
p-extend (1) # p:["Run", "Swim", "Dance", "Cook", "Paint"]

» Indexing and slicing

1[0] = "Ubereat" # 1 mutated: ["UberEat', "Paint']
1p[1:4] # ["Paint", "Run", "Swim"]

1p[::-1] # ["Swim", "Run", "Paint", "Cook"]
1.append(p[:2]) # 1:["UberEat"”, "Paint", ["Run", "Swim"]]
1[2] # ["Run", "Swim"]

pl1l = "tv" # l:["UberEat", "Paint", ["Run", "tv"]]

DS-GA 1007 | Lecture 1

Operations on Lists

Aliasing
» Aliasing lists (=) side effect: changing one changes the other!

warm = ["red","yellow","orange"]

hot = warm

hot.append ("pink")

print (hot)

Output: ["red”,"yellow”,” orange” " pink"|
print (warm)

Output: ['red”, " yellow”,” orange”,” pink’]

DS-GA 1007 | Lecture 1

Operations on Lists

Cloning
» Cloning lists creates a new list and copies every element

warm = ["red","yellow","orange"]

hot = warm[:]

hot.append ("pink")

print (hot)

Output: ["red”,"yellow”,” orange” " pink"]
print (warm)

Output: ["red”,"yellow”," orange”]

DS-GA 1007 | Lecture 1

Operations on Lists

Sorting lists

» sorted does not mutate list, must assign to variable

warm = ["red","yellow","orange"]

sortedwarm = sorted(warm)

sz Output: ['red”,"yellow" " orange']

print (sortedwarm)

non N

Output: ["orange”,"red"," yellow"]

» sort() mutates the list, returns nothing

sortedwarm = warm.sort()

print (warm)

non N

Output: ["orange”,"red"," yellow"]
print (sortedwarm)
Output: None

DS-GA 1007 | Lecture 1

Operations on Dictionaries

Dictionaries are mutable and can be nested

> Adding, testing an deleting entries

rates = {'Movie 1':'A', 'Movie 2':'B'}

rates['Movie 3'] = 'A' # Add new entry, key must be untique

'Movie 3' in rates Returns True
'Movie 4' in rates Returns False
len(rates)

del(rates['Movie 3'])

#
#
Returns 3 (number of entries)
{'Movie 1':'A', 'Movie 2':'B'}
» Extracting Keys and Values

rates.keys() # Returns tterable ('Movies 1', 'Movie 2')
rates.values() # Returns iterable ('A',' B')
rates.items() # Returns (('Movie 1','A'),('Movie 2','B'))

DS-GA 1007 | Lecture 1

Iterating over string, list, dictionary

The Pythonic way...

» Strings
s = 'abcde'
for i in s: # for ¢ in range(len(s)):
print(i) # print (s(i))

> Lists
1=1[1,2,3,4,5]
for i in 1: # for ¢ in range(len(l)):
print(i) # print (1(%))

» Dictionaries
¢l = qi8a0 237,836 48 IB0 B3 0& 0T
for k in d.keys():
print (d[k])

DS-GA 1007 | Lecture 1

Example with string, list, dictionary

Find frequency of each word in a song:

lyrics = "I heard there was ... Hallelujah".split()
d = {3
for word in lyrics:
if word in d:
d[word] += 1
else:
d[word] = 1

print(d['Hallelujah'])

DS-GA 1007 | Lecture 1

Example with string, list, dictionary

Find frequency of each word in a song:

lyrics = "I heard there was ... Hallelujah".split()
d = {}
for word in lyrics:
if word in d:
d[word] += 1
else:
d[word] = 1

print(d['Hallelujah']) Output: 25

DS-GA 1007 | Lecture 1

Read Input

» Prompt user for input. Binds entry to variable

song = input("Write a song")

word = input("Type a word")

DS-GA 1007 | Lecture 1

Read Input and Print Output

» Openfile, read file, print to file

infile = open("input.dat","r")
outfile = open("output.dat","w")

lines = infile.readlines()

print(lines[-1]) # Print last line of input file
print ("Occurences of Hallelujah:", file=outfile)

for line in infile:

if ("Hallelujah" in 1line): outfile.write(line)

DS-GA 1007 | Lecture 1

Read Input and Print Output

» Read dictionary input files
import json
dictcontents = json.load(open('dictfile.json'))

» Format string output
s = input("Type a sentence: ")
1 = s.split()
n = len(1l)
print ('Count{0:>8}\n First{1:>8}'.format(n,1[0]))

DS-GA 1007 | Lecture 1

Execute and Interface with Program

» Demo this code:
song = open("lyrics.txt","r")
word = input("Type a word: ")
d = {word: 0}
for line in song:
if word in line:
d[word] += 1
print ('The word {} appears {} times in this song'
.format (word,d [word]))

DS-GA 1007 | Lecture 1

Execute and Interface with Program

» Demo this code:
song = open("lyrics.txt","r")
word = input("Type a word: ")
d = {word: 0}
for line in song:
if word in line:
d[word] += line.count(word)
print ('The word {} appears {} times in this song'
.format (word,d [word]))

DS-GA 1007 | Lecture 1

Thank you!

	Course Information
	Introduction to Programming in Python
	What is Programming

