DS-GA 1007 | Lecture 2

Programming for Data Science

Jeremy Curuksu, PhD
NYU Center for Data Science
jeremy.cur@nyu.edu

February 10, 2023



DS-GA 1007 Curriculum

Programming for Data Science:

| 2

vV Vv V.V vV vV VY

Introduction to Programming in Python

Best Practice Programming and Software Engineering
Program Efficiency

Interacting with Programs

Array Manipulation for Scientific Computing

Data Visualization

Advanced Data Objects (x4)

Environments for Collaborative Programming

Industrial Applications

DS-GA 1007 | Lecture 2



Best Practice
Programming in Python



Best Practice Programming in Python

Last week:
» What is programming?
» Primitive Data Types and Control Flow
» Compound Data Types: Tuples, Lists, Dictionaries

Today:
» Modularization and Abstraction
» Functions and Objects in Python
» Testing and Debugging Programs

DS-GA 1007 | Lecture 2



Modularization and
Abstraction



Programming Best Practices

» Measured by amount of functionality, not volume

» Modularization: Decompose code in self-contained
modules to keep code organized and coherent

» Abstraction: Define modules as functions or objects
which can be reused. Leverage preexisting modules,
either built-in or imported (NumPy, Pandas, ...)

» Document each module (input, output, properties)

» Test and debug modules individually, pre-emptively

DS-GA 1007 | Lecture 2



Functions in Python



Decomposition with Functions

» Decompose to create structure: Functions should be
self-contained and reusable

» Abstract to suppress details: Function should come
with specifications or docstrings. A function can
then be used as a black box: no need to see details

» Functions are not run until they are invoked

» Functions have:

> A name

> A body

» A docstring (optional)

» Input parameters (optional)
» Returns outputs (optional)

DS-GA 1007 | Lecture 2



Decomposition with Functions

Function

def <function name>(<parameters>):

mnimnn

""" DocString
<body>

return <output>

Example:

def testeven(i):
m-Input: A positive integer number
Output: True if number is even, False if odd
win
print ("Executing test even for i = {}".format(i))
return i%2 == 0

DS-GA 1007 | Lecture 2



Scope of Variables in Functions

» Scope: A new "local” scope for variable names is created
when the program enters a function

> Local Scope:

» Variables defined inside a function are not defined
outside the function

> Values fetched to function parameters get bound to
local variable names when the function is invoked

» Global Scope:

» Variables defined outside can be accessed inside
("visible everywhere”)

» Variables defined outside cannot be modified inside

DS-GA 1007 | Lecture 2



Local Variables in Functions

def f(x):
"""Return square of a number"""
X = X*¥%2

return X
y = 10

f(y)
print (y) Output: ?

DS-GA 1007 | Lecture 2



Local Variables in Functions

def f(x):
"""Return square of a number"""
X = X*¥%2

return X
y = 10

f(y)
print (y) Output: 10

DS-GA 1007 | Lecture 2



Local Variables in Functions

def f(x):
"""Return square of a number"""
X = X*¥%2

return X
x = 10

f(x)
print (x) Output: ?

DS-GA 1007 | Lecture 2



Local Variables in Functions

def f(x):
"""Return square of a number"""
X = X*¥%2

return X
x = 10

f (%)
print(x) Output: 10

DS-GA 1007 | Lecture 2



Local Variables in Functions

def f(x):
"""Return square of a number"""
X = X*¥%2

return X

x = 10
x = £(10)
print(x) Output: 100

DS-GA 1007 | Lecture 2



Local Variables in Functions

def f(x):
"""Return square of a number"""
X = X*¥%2

return X

x = 10
f(x)
print(x) Output: 100

X

DS-GA 1007 | Lecture 2



Global Variables in Functions

def f(x):
X = xX*%2

X =x+y

return X
y = 10
x = £(10)

print('x = {}, y = {}'.format(x,y))

Output: x =110,y =10

DS-GA 1007 | Lecture 2



Global Variables in Functions

def f(x):
"""Return square of a number"""
Y = X**2

return y

y = 10

x = £(10)

print('x = {}, y = {}'.format(x,y))
Output: x =100,y = 10

DS-GA 1007 | Lecture 2



Global Variables in Functions

def f(x):
X = X**2 + y
y =X
return y

y = 10

x = £(10)

print('x = {}, y = {}'.format(x,y))
Output: UnboundLocalError

DS-GA 1007 | Lecture 2



Input and Ouput to Functions

Input: parameters

>

>

Optional, from O to 256 >

Can be any data type fit to >
operations happening
inside the function

Can be other functions >
Can be value or existing

global variable name >
Global variables input as

parameters get reassigned >
to local variable names

Output: return or print

Optional

Can use only 1 return with
only 1 value per function,
but can be any data type

Can use as many print
statements as desired

If no return given, Python
returns the value None

Global variables are not
impacted inside functions

DS-GA 1007 | Lecture 2



Objects in Python



Decomposition with Objects

What are Objects?

> Objects are data abstraction. An object is a collection of:
> Data Attributes: Internal representation of the
object (equivalent to data variables)
» Methods: Interface for interacting with the object
(equivalent to functions)

» Objects are instances of a class
> Class statements are blueprint to create objects
» Once an object is created, its attributes and
methods are accessed by the dot operator:
objectname.attributename()

DS-GA 1007 | Lecture 2



Decomposition with Objects

Object
class name(<superclass>):
mnmnn DOCStT'I;ng ninn
<body>
Example:
Define new type of object: Use the object:
class dog(animal): fido = dog() # Create instance
speed = 30 print(fido.domesticated)
race = 'Not specified' fido.speed = 20
domesticated = True fido.race = 'Schnauzer'

fido.cuteness = 'XXL'

DS-GA 1007 | Lecture 2



Object Oriented Programming (OOP)

Advantages of OOP for Data Science

» Create new types (=classes) of data objects
> Create your own data types with custom attributes
> Bundle together objects of common attributes

» Modularization —=> Divid & Conquer code development
> Implement and test behavior of each class separately
> Access attributes and methods consistently using the dot
operator: No collision on variable and function names

» Abstraction => Easy to reuse code
> Separate implementation of defining vs. using an object
> Inheritance: Build layers of object abstractions that
inherit behaviors from other classes of objects

DS-GA 1007 | Lecture 2



Object Oriented Programming (OOP)

Animal

DS-GA 1007 | Lecture 2



Attributes and Methods of Objects

Attributes and Methods are accessed by the “” operator

» Data Attributes
> Data objects that make up the class

> "What it is”
Example: Class 2Dcoordinate made up of two numbers

» Methods (Procedural Attributes)
»> Functions that only work with this class

> "What it does”
Example: Class 2Dcoordinate with a method to compute

the distance between two 2Dcoordinate objects

DS-GA 1007 | Lecture 2



Methods of Object

Defining and Invoking Methods

» When creating a method, the first argument passed to it (called
self) must be the object itself

» Invoke the method with " and Python automatically fills in self
» Other than self and ", methods behave exactly like functions

Define new type of object: Use the object:
class coordinate(object): pl = coordinate()
x =0.1 p2 = coordinate()
y =0.1 pl.x = 0.8
def distance(self,other): pl.y = 0.2
dx2 = (x-other.x)**2 d = pl.distance(p2)
dy2 = (y-other.y)**2 print('Distance: ',d)

return (dx2 + dy2)**0.5

DS-GA 1007 | Lecture 2



The Object Initialization Method

The _init_ Method

» Aspecial method called _init_ can be created to initialize
data attributes when creating an instance of the class

» Python automatically calls _init_ when creating an object

» Out of scope for this course: Implement set and get methods
to access all data attributes of an object

Define new type of object: Use the object:
class coordinate(object): pl = coordinate(0.8,0.2)
def __init__(self,a,b): p2 = coordinate(0.5,0.5)
self.x = a d = pl.distance(p2)
self.y = b print('Distance: ',d)

DS-GA 1007 | Lecture 2



Example of New Data Object

class coordinate(object):
def __init__(self,a=0.1,b=0.1):
self.x = a
self.y = b
def distance(self, other):
dx2 = (self.x-other.x)**2
dy2 = (self.y-other.y)**2
return (dx2 + dy2)**0.5
pl = coordinate(0.8,0.2)
p2 = coordinate(0.5,0.5)
d = pl.distance(p2)

print('Distance: ',d)

DS-GA 1007 | Lecture 2



Inheritance of Object Types

> Parent class = Superclass
> In Python all classes derive from a superclass

DS-GA 1007 | Lecture 2



Inheritance of Object Types

> Parent class = Superclass
» In Python all classes derive from the parent class Object

» Child class = Subclass
» Inherits all data and behaviors from parent class
» Add more information and more behavior
> Override behavior

ﬁ
“

DS-GA 1007 | Lecture 2

Sentient
Being



Inheritance of Object Types

» For any data object in Python, you have access to methods in
current class definition and up the hierarchy

> You can only use the first method up the hierarchy with that
method name: A class may have method with same name as in
superclass, but it overrides inherited method with same name

ﬁ
“

DS-GA 1007 | Lecture 2

Sentient
Being



Testing and Debugging
Programs



Testing and Debugging Programs

» Defensive Programming:

> Modularization: Break up programs into modules
(functions, objects) and leverage pre-existing modules

> Abstraction: Document specification for each module
(expected input-output, assumptions on code design)

» Test and debug modules individually:

> Test: Identify where and when errors happen
» Debug: Understand and solve errors

> Pre-emptively... Inplement handles to raise exceptions
and assert module specifications

DS-GA 1007 | Lecture 2



Testing Programs

Testing = Identifying where and when errors happen

» What to test?
> Unit test: Test/validate each piece of program separately
> Regression test: Add test for bugs as you find them
> Integration test: Ensure overall program runs

» How to test?

> Intuitive or Random test: Explore possible inputs and test
cases randomly or based on intuition

> Black Box test: Explore test cases through specification
> Glass Box test: Explore test cases through code

DS-GA 1007 | Lecture 2



Black Box Testing

Design test cases without looking at code

» Only use specification to define typical values and edge cases
» Can be reused if implementation changes

» Can be done by someone other than the implementer

Example: How would you test this function?

def topgrade(l):
""'Read list of grades and return highest one''’
top = 1[0]
for r in 1[1:]:
if r > top: top = r

return top

DS-GA 1007 | Lecture 2



Glass Box Testing

Design test cases based on the code
» Use code to test all possible branchings, loops, etc

» A program is called path-complete if every potential scenario
through code has been tested at least once

» Can run loops arbitrarily many times yet miss key scenarios

Example: How would you test this function?

def topgrade(l):
"'"'Read list of grades and return highest one
top = 1[0]
for r in 1[1:]:
if r > top: top =r

1

return top

DS-GA 1007 | Lecture 2



Debugging Programs

Debugging = Understanding and solving errors

» The scientific method:
> Study code and data to form hypotheses on origin of bug

> Use repeatable experiments

> The tools:
» Built-in Python editors and interpreters

> Print statements to test hypotheses. Quickly locate bugs
with prints at begin/end of functions (or use bisection)

> Systematic: Make change, compare new vs. old, deduce, ...

DS-GA 1007 | Lecture 2



Common Errors in Python

1=[Ia|,lbl,lcl »?
1[3]

int (1)
1[2]1/4

c/4

1en(['a‘,'b','c‘]

open('c.dat"')

DS-GA 1007 | Lecture 2



Common Errors in Python

= [Ial,lbl,lcl
1[3] > ?

int (1)
1[2]1/4

c/4

1en(['a‘,'b','c‘]

open('c.dat"')

DS-GA 1007 | Lecture 2



Common Errors in Python

1=1['a','b','c'] » IndexError: E.g., Trying to access
1[3] beyond the limits of a list

int (1) > ?

1[2]/4

c/4

1en(['a‘,'b','c‘]

open('c.dat"')

DS-GA 1007 | Lecture 2



Common Errors in Python

1=1['a','b','c'] » IndexError: E.g., Trying to access
1[3] beyond the limits of a list

int (1) » TypeError: E.g., Trying to convert
1[2]/4 an inappropriate type (list > int)
c/4

1en(['a‘,'b','c‘]

open('c.dat"')

DS-GA 1007 | Lecture 2



Common Errors in Python

1=1['a','b','c'] » IndexError: E.g., Trying to access
1[3] beyond the limits of a list

int (1)

1[2]/4 > ?

c/4

1en(['a‘,'b','c‘]

open('c.dat"')

DS-GA 1007 | Lecture 2



Common Errors in Python

1=1['a','b','c'] » IndexError: E.g., Trying to access

1[3] beyond the limits of a list

S ) > TypeError: E.g.,tTr:/mg to _cc?nvert

102]/4 gn mapprgpna e type, mixing
inappropriate data types, etc

c/4 > ?

1en(['a‘,'b','c‘]

open('c.dat"')

DS-GA 1007 | Lecture 2



Common Errors in Python

1=1['a','b','c'] » IndexError: E.g., Trying to access

1[3] beyond the limits of a list

int (1) > TypeError: E.g.,tTr:/mg to _cc?nvert
an inappropriate type, mixin

1[21/4 Rahinla s il |7 5
inappropriate data types, etc

c/4 » NameError: E.g., Referencing a
non-existent variable

len(['a','b','c'] > ?

open('c.dat"')

DS-GA 1007 | Lecture 2



Common Errors in Python

= [Ial’lbl,lcl:l
1[3]

int (1)
1[2]1/4

c/4

len(['a‘,'b',‘c‘]

open('c.dat")

» IndexError: E.g., Trying to access
beyond the limits of a list

»> TypeError: E.g., Trying to convert
an inappropriate type, mixing
inappropriate data types, etc

» NamekError: E.g., Referencing a
non-existent variable

> SyntaxError: E.g., Forgetting to
close parenthesis, quotation, etc

> ?

DS-GA 1007 | Lecture 2



Common Errors in Python

= [Ial’lbl,lcl:l
1[3]

int (1)
1[2]1/4

c/4

len(['a‘,'b',‘c‘]

open('c.dat")

» IndexError: E.g., Trying to access
beyond the limits of a list

»> TypeError: E.g., Trying to convert
an inappropriate type, mixing
inappropriate data types, etc

» NamekError: E.g., Referencing a
non-existent variable

> SyntaxError: E.g., Forgetting to
close parenthesis, quotation, etc

» |IOError: File not found

DS-GA 1007 | Lecture 2



Pre-emptively Handling Errors

Exception Handlers

try/except/raise: Try a block of code, if execution hits unexpected
condition, handle this exception with specific instructions, or raise
an error which stops execution

Example:

def squareroot(x):

try:
return(math.sqrt(x))

except ValueError:
print("Warning: Input is not positive")
return(math.sqrt(-x))

except:
raise TypeError("Stopped: Input is not a number")

DS-GA 1007 | Lecture 2



Pre-emptively Handling Errors

Assertion Handlers

assert: Stop execution and raise error if assumptions are not met.
This pre-emptively locates sources of bugs as soon as introduced
and avoid propagating them (defensive programming)

Example:

def ratio(x,y):
assert y != 0, 'Denominator of ratio is zero'
return x/y

DS-GA 1007 | Lecture 2



Thank you!



	Best Practice Programming in Python
	Modularization and Abstraction


