
DS-GA 1007 | Lecture 1
Programming for Data Science

Jeremy Curuksu, PhD
NYU Center for Data Science
jeremy.cur@nyu.edu

September 22, 2022

Week 1

1. Course Information

2. Introduction to Programming in Python

DS-GA 1007 | Lecture 1

Course Information

DS-GA 1007 Instructional Team

Instructor:

▶ Dr. Jeremy Curuksu, jeremy.cur@nyu.edu

Section Leaders:

▶ Cora Mao, ym1596@nyu.edu

▶ Devarsh Patel, dp3324@nyu.edu

DS-GA 1007 | Lecture 1

DS-GA 1007 Schedule

DS-GA 1007.001 Lecture:

▶ Mondays from 6:45pm-8:30pm EST
▶ Location: 12 Waverly Place, Room G08

DS-GA 1007.002 Lab:

▶ Wednesdays from 7:10pm-8:00pm EST
▶ Location: 19 University Place, Room 102

DS-GA 1007 | Lecture 1

DS-GA 1007 Curriculum

Programming for Data Science:
▶ Introduction to Programming in Python
▶ Best Practice Programming and Software Engineering
▶ Program Efficiency
▶ Interacting with Programs
▶ NumPy: Array Manipulation for Scientific Computing
▶ Matplotlib: Data Visualization
▶ Pandas: Advanced Data Objects (×4)
▶ Git: Environment for Collaborative Programming
▶ Industrial Applications

DS-GA 1007 | Lecture 1

DS-GA 1007 Resources

▶ Lecture and lab practice code + lecture slides

▶ Python Data Science Handbook (2017) by Jake VanderPlas

▶ The Carpentries intro labs on Python, Linux and Git
(software-carpentry.org/lessons/index.html)

▶ Python for Data Science (2022) by Yuli Vasiliev

▶ The Linux Command Line (2019) by William Shotts

▶ Python packages used in this course have online concise
high-quality doc: NumPy, Pandas, Matplotlib

DS-GA 1007 | Lecture 1

software-carpentry.org/lessons/index.html
https://numpy.org/doc/
https://pandas.pydata.org/docs/
https://matplotlib.org/stable/index.html

Advices to Succeed in this Course

▶ Attend both lectures and labs. Lectures and labs
complement each other to set you up for success

▶ Practice, practice, practice. Programming is a skillset,
everyone has a unique approach, find your own!

▶ Before writing a program, define its goal and data flows

▶ Break up problems into sub-problems. Break your
program up into modules that can be tested individually

▶ Document your programs. We all forget important details

▶ Ask questions!
DS-GA 1007 | Lecture 1

Introduction to
Programming in Python

Introduction to Programming in Python

Today topics:

▶ What is Programming?

▶ Why Programming in Data Science?

▶ Primitive Data Types

▶ Control Flow

▶ Compound Data Types: Tuples, Lists, Dictionaries, ...

▶ Manipulating Compound Data Types

▶ Reading/Writing Files and Examples

DS-GA 1007 | Lecture 1

What is Programming?

DS-GA 1007 | Lecture 1

What do Computers do?

▶ Perform calculations
▶ Fixed program computers
▶ Stored program computers

▶ Store knowledge
▶ Declarative knowledge (statements of facts)
▶ Imperative knowledge (programs)

DS-GA 1007 | Lecture 1

What do Computers do?

Architecture of stored program computers

DS-GA 1007 | Lecture 1

What is a Program?

▶ Represent knowledge with data structures:
1. Primitive data types
2. Compound data types

▶ Encode an algorithm:
1. Instructions = Sequence of simple steps (commands)
2. Flow of control = Specifies when each step executed
3. Termination condition = Determine when to stop

DS-GA 1007 | Lecture 1

Why Programming for Data Science?

DS-GA 1007 | Lecture 1

Creating a Program

▶ All instructions in a program are built from a set of
primitive instructions
▶ Arithmetic and logic operations
▶ Tests to change flow of control
▶ Data transfers

▶ A programming language offers a set of primitives
Anything computable in one language is computable in
any other programming language

▶ A special program ’interpreter’ executes instructions

DS-GA 1007 | Lecture 1

Creating a Program in Python

▶ Data structure definition: Evaluated by interpreter

▶ Command: Instruct the interpreter to do something

▶ Data & commands can be typed interactively into a
console, or stored to file to be read later in batch

▶ Example:

Define the data

data = "DS-GA 1007"

Print the data

print("Welcome to " + data)

DS-GA 1007 | Lecture 1

Syntax and Semantics of Languages

In English In Python
(Natural Language) (Programming Language)

Primitives Words Numbers, Strings, Operators

Syntax Valid: She likes running Valid: 5 + 10
Invalid: She running likes Invalid: 5 = 10

Static- Valid: I like pizzas Valid: ”hi ” + ”5”
Semantics Invalid: Pizzas like me Invalid: ”hi ” + 5

Semantics He likes her x = −9 × x + 50

DS-GA 1007 | Lecture 1

Syntax and Semantics of Languages

▶ Syntax errors: Common and easily caught by editor
and interpreter

▶ Static Semantic errors: Often but not always caught
by the interpreter, can cause unpredictable behavior

▶ Semantic errors: Frequent source of problem:
program crashes, runs forever, or gives an answer
but different than expected

DS-GA 1007 | Lecture 1

Primitive Data Types
in Python

DS-GA 1007 | Lecture 1

Why Python?

Poll on 4,200 data scientists from 140 countries
Source (2021): anaconda.com

Language shown on LinkedIn postings
Source (2022): codingnomads.co

TIOBE popularity index. Source (2022): tiobe.com

DS-GA 1007 | Lecture 1

https://www.anaconda.com/state-of-data-science-2021
https://codingnomads.co/blog/the-best-programming-languages-to-learn/
https://www.tiobe.com/tiobe-index

Python Primitive Data Types

▶ Programs manipulate data objects

▶ An object has a type: defines what the program can do to it

Primitive Python Objects

Int Integer Numbers Ex: 1, 2, 3...

Float Real Numbers Ex: 3.14

String Text Contents Ex: ”Hello World!”

Bool Boolean Values True , False

NoneType Special Type None

DS-GA 1007 | Lecture 1

Expressions and Operators
▶ Expressions: Combinations of objects and operators. An

expression has a value. A value has a type...

▶ ”Everything in Python is an object”

Primitive Python Operators
Arithmetic Comparison Boolean

= Assignment == Equality not Negation
+ Sum ! = Inequality and Conjunction
− Difference > More than or Disjunction
∗ Product >= More or Equal (inclusive)
/ Division < Less than
% Remainder <= Less or Equal
∗∗ Power

DS-GA 1007 | Lecture 1

Variables and Assignments
▶ An assignment binds a value to a variable name:

pi = 3.14

▶ The value is then stored in memory. It can be retrieved by
invoking the variable name:

print(pi)

▶ A subsequent assignment re-binds the variable to a new value:

pi = 3.14159

▶ A variable can be re-bound to expressions operating on itself:

r = 10

area = pi * (r**2)

ncircles = 5

area = area * ncircles

DS-GA 1007 | Lecture 1

Variables and Assignments
▶ Abstraction of Expressions: A variable name assigned to the

value of an expression can be used instead of the value itself
to write an algorithm as a function of input parameters

import sys

from sklearn.metrics import confusion_matrix

actuals, predictions = sys.argv[1]

m = confusion_matrix(actuals, predictions)

TP = m[1,1]

FN = m[1,0]

TP = TP / (TP + FN)# Proportion

TP = int(TP * 100) # Percentage

print("The recall is {}%".format(TP))

DS-GA 1007 | Lecture 1

Control Flow
in Python

DS-GA 1007 | Lecture 1

Control Flow: Branching, Iteration
▶ Evaluate a block of code if a condition is True.

<condition> evaluates to a Boolean (True or False)

Branching
if <condition>:

<expressions>

if <condition>:

...

elif <condition>:

...

else:

...

Iteration
while <condition>:

<expressions>

Evaluation repeats until the
condition becomes False

for <variable> in <>:

...

Evaluation repeats for each
value taken by the variable

DS-GA 1007 | Lecture 1

Control Flow: Example of Branching

▶ Indentation defines blocks of code in Python

if y > 0 and x > 0:

print("x and y are positive numbers")

if x == y:

print("x and y are equal")

elif x < y:

print("x is smaller than y")

else:

print("x is larger than y")

print("What else do you want to know?")

DS-GA 1007 | Lecture 1

Control Flow: Example of Iteration

▶ Execute block of code until condition is false

while x != y:

if x < y:

x = x + 1

else:

x = x - 1

print("Now x and y are equal")

DS-GA 1007 | Lecture 1

Control Flow: Example of Iteration

▶ Execute block of code until condition is false

while x != y:

if x < y:

x = x + 1

else:

x = x - 1

print("Now x and y are equal") ...or are they?

DS-GA 1007 | Lecture 1

Control Flow: Example of Iteration

▶ Iterate through a preset sequence of objects

▶ With a While loop
n = 0

while n < 10:

print(n)

n = n + 1

▶ Shortcut: The For loop
for n in range(10):

print(n)

DS-GA 1007 | Lecture 1

Creating loops with range

▶ Create an iterable with range (start, stop, step)
▶ Loop until value is stop− 1
▶ start and step are optional
▶ Default values are start = 0 and step = 1

for n in range(10):

<expressions>

for n in range(5, 10):

<expressions>

for n in range(5, 10, 2):

<expressions>

DS-GA 1007 | Lecture 1

Breaking loops with break

▶ Exit a loop immediately with break
▶ Skips remaining expressions in code block
▶ Exits only the current ”innermost” loop

x = ...

for n in range(5, 10, 2):

x = x + n

if x > 10:

break

print(x)

DS-GA 1007 | Lecture 1

Compound Data Types

DS-GA 1007 | Lecture 1

Compound Data Types: Tuples

▶ Tuple = Ordered sequence of information accessible by index

▶ Types of elements can be mixed

▶ A tuple is immutable: Values cannot be changed

▶ A tuple is represented with parentheses

t = () # Create an empty tuple

t = ("NYU",1,2,3) # Create tuple of four elements

len(t) # Evaluates to 4 (number of elements)

t[0] # Evaluates to "NYU"

t[1:3] # Slice tuple, evaluates to (1,2)

t[1] = 4 # Syntax error

DS-GA 1007 | Lecture 1

Compound Data Types: Lists

▶ List = Ordered sequence of information accessible by index

▶ Types of elements can be mixed

▶ A list is mutable: Values can be changed

▶ A list is represented with square brackets

l = [] # Create an empty list

l = ["NYU",1,2,3] # Create list of four elements

len(l) # Evaluates to 4 (number of elements)

l[0] # Evaluates to "NYU"

l[1:3] # Slice list, evaluates to [1,2]

l[1] = 4 # l is now ["NYU",4,2,3]

DS-GA 1007 | Lecture 1

Compound Data Types: Dictionaries

▶ A Dictionary stores information accessible by keys

▶ Keys & values are custom data, not ordered, type can be mixed

▶ Values can be duplicate and of any type

▶ Keys must be unique and of immutable type

▶ A dictionary is represented with curly braces

d = {} # Create an empty dictionary

rates = {'Movie 1':'A+', 'Movie 2':'B', 'Song 1':10}

rates['Movie 1'] # Evaluates to 'A+'

rates['Song 2'] # Key Error

rates['B'] # Key Error

rates['Movie 2'] = 'A+'

DS-GA 1007 | Lecture 1

Tuple and List vs. Dictionary

Tuples and Lists

▶ Sequence of elements

▶ Look up elements by an
index

▶ Indices have an intrinsic
order

▶ The index is an integer

Dictionaries

▶ Pairs of values and keys

▶ Look up items (values) by
other items (keys)

▶ Keys and values are not
ordered

▶ The key can be any
immutable type

DS-GA 1007 | Lecture 1

Arrays and Data Frames

Arrays
Lecture 5: Array Manipulation
and Scientific Computing

▶ Fixed-typed elements

▶ Look up elements by
integer indexing

▶ Scale to large dense
multidimentional data

▶ Fast vectorized operations

Data Frames
Lectures 7 to 10: Advanced
Data Objects

▶ Multidimensional array
with heterogeneous
column types

▶ Missing data (NaNs)

▶ Labels attached to rows
and columns

DS-GA 1007 | Lecture 1

Manipulating Compound
Data Types

DS-GA 1007 | Lecture 1

Manipulating Objects in Python
Objects have ”methods”
▶ Everything in Python is an object: Lists are objects, Strings are

objects, Dictionaries are objects, Arrays are objects, ...

▶ Objects have data and methods (covered in Lecture 2)
▶ Methods are invoked by the dot notation: object.method()
▶ Examples:

l.append(x) # Mutates list l by appending x

l.extend([x,y]) # Extends list l with x and y

l.pop() # Deletes last element of list l , same as del(l[-1]) returns the removed element % del is an example where external function applied to object mutates object l (often methods mutate while function don't)

▶ Other functions also apply to an object depending on its type
▶ Examples:

len(l) # Returns number of elements in list l

del(l[0]) # Deletes first element of list l

DS-GA 1007 | Lecture 1

Operations on Strings
A string is a special type of tuple

▶ Appending characters and concatenating strings
request = "Give me a"

goal = "Hi" + "5"

question = request + " " + goal

▶ Indexing characters: Starts at 0. Last element is at index -1
s = "abcd"

len(s) # Evaluates to 4 (number of characters)

s[0] # Evaluates to "a"

s[-1] # Evaluates to "d"

s[-4] # Evaluates to "a"

s[1:4] # Slice string, evaluates to "bcd

s[1] = "e" # Syntax error

DS-GA 1007 | Lecture 1

Operations on Strings

Slicing

▶ A string can be sliced using [start:stop:step]

▶ Giving only two numbers means [start:stop]

▶ Default step = 1

▶ Fine control possible by keeping colons and ommiting numbers

s = "abcde"

s[1:4] # Evaluates to "bcd"

s[0:5:2] # Evaluates to "ace"

s[5:1:-2] # Evaluates to "ec"

s[:] # Same as s[0:len(s):1]

s[::-1] # Same as s[-1:-(len(s)+1):-1]

DS-GA 1007 | Lecture 1

Operations on String

A string can be converted into a list
▶ list(s) returns a list where every character is an element

list("abcde") # Returns ["a","b","c","d","e"]

▶ s.split() splits a string s on a character parameter. It splits on
spaces if called without a parameter
l="Cook or Paint".split(" or ") # Returns ["Cook","Paint"]

l.append("Dance") # Operate on list (covered next slide)

▶ Lists can be converted back to strings
s.join(l) turns a list l into a string of characters. Characters in s
are added between elements of the list, but s can be empty
" or ".join(l) # Returns "Cook or Paint or Dance"

DS-GA 1007 | Lecture 1

Operations on Lists
Lists are mutable and can be nested
▶ Appending elements and concatenating lists

l = ["Cook","Paint"]; p = ["Run","Swim"]

lp = l + p # lp:["Cook","Paint","Run","Swim"] l,p unchanged

p.append("Dance") # p:["Run","Swim","Dance"]

p.extend(l) # p:["Run","Swim","Dance","Cook","Paint"]

▶ Indexing and slicing
l[0] = "Ubereat" # l mutated: ["UberEat","Paint"]

lp[1:4] # ["Paint","Run","Swim"]

lp[::-1] # ["Swim","Run","Paint","Cook"]

l.append(p[:2]) # l:["UberEat","Paint",["Run","Swim"]]

l[2] # ["Run","Swim"]

p[1] = "tv" # l:["UberEat","Paint",["Run","tv"]]

DS-GA 1007 | Lecture 1

Operations on Lists

Aliasing

▶ Aliasing lists (=) side effect: changing one changes the other!

warm = ["red","yellow","orange"]

hot = warm

hot.append("pink")

print(hot)

Output: [”red”, ”yellow”, ”orange”, ”pink”]

print(warm)

Output: [”red”, ”yellow”, ”orange”, ”pink”]

DS-GA 1007 | Lecture 1

Operations on Lists

Cloning

▶ Cloning lists creates a new list and copies every element

warm = ["red","yellow","orange"]

hot = warm[:]

hot.append("pink")

print(hot)

Output: [”red”, ”yellow”, ”orange”, ”pink”]

print(warm)

Output: [”red”, ”yellow”, ”orange”]

DS-GA 1007 | Lecture 1

Operations on Lists

Sorting lists
▶ sorted does not mutate list, must assign to variable

warm = ["red","yellow","orange"]

sortedwarm = sorted(warm)

print(warm) Output: [”red”, ”yellow”, ”orange”]
print(sortedwarm)

Output: [”orange”, ”red”, ”yellow”]

▶ sort() mutates the list, returns nothing
sortedwarm = warm.sort()

print(warm) Output: [”orange”, ”red”, ”yellow”]
print(sortedwarm)

Output: None
DS-GA 1007 | Lecture 1

Operations on Dictionaries

Dictionaries are mutable and can be nested
▶ Adding, testing an deleting entries

rates = {'Movie 1':'A', 'Movie 2':'B'}

rates['Movie 3'] = 'A' # Add new entry, key must be unique

'Movie 3' in rates # Returns True

'Movie 4' in rates # Returns False

len(rates) # Returns 3 (number of entries)

del(rates['Movie 3']) # {'Movie 1':'A','Movie 2':'B'}

▶ Extracting Keys and Values
rates.keys() # Returns iterable ('Movies 1','Movie 2')

rates.values() # Returns iterable ('A',' B')

rates.items() # Returns (('Movie 1','A'),('Movie 2','B'))

DS-GA 1007 | Lecture 1

Iterating over string, list, dictionary

The Pythonic way...
▶ Strings

s = 'abcde'

for i in s: # for i in range(len(s)):

print(i) # print(s(i))

▶ Lists
l = [1,2,3,4,5]

for i in l: # for i in range(len(l)):

print(i) # print(l(i))

▶ Dictionaries
d = {1:'a',2:'b',3:'c',4:'b',5:'a'}

for k in d.keys():

print(d[k])
DS-GA 1007 | Lecture 1

Example with string, list, dictionary

Find frequency of each word in a song:

lyrics = "I heard there was ... Hallelujah".split()

d = {}

for word in lyrics:

if word in d:

d[word] += 1

else:

d[word] = 1

print(d['Hallelujah'])

DS-GA 1007 | Lecture 1

Example with string, list, dictionary

Find frequency of each word in a song:

lyrics = "I heard there was ... Hallelujah".split()

d = {}

for word in lyrics:

if word in d:

d[word] += 1

else:

d[word] = 1

print(d['Hallelujah']) Output: 25

DS-GA 1007 | Lecture 1

Read Input

▶ Prompt user for input. Binds entry to variable

song = input("Write a song")

word = input("Type a word")

DS-GA 1007 | Lecture 1

Read Input and Print Output

▶ Open file, read file, print to file

infile = open("input.dat","r")

outfile = open("output.dat","w")

lines = infile.readlines()

print(lines[-1]) # Print last line of input file

print("Occurences of Hallelujah:", file=outfile)

for line in infile:

if("Hallelujah" in line): outfile.write(line)

DS-GA 1007 | Lecture 1

Read Input and Print Output

▶ Read dictionary input files
import json

dictcontents = json.load(open('dictfile.json'))

▶ Format string output
s = input("Type a sentence: ")

l = s.split()

n = len(l)

print('Count{0:>8}\n First{1:>8}'.format(n,l[0]))

DS-GA 1007 | Lecture 1

Execute and Interface with Program

▶ Demo this code:
song = open("lyrics.txt","r")

word = input("Type a word: ")

d = {word: 0}

for line in song:

if word in line:

d[word] += 1

print('The word {} appears {} times in this song'

.format(word,d[word]))

DS-GA 1007 | Lecture 1

Execute and Interface with Program

▶ Demo this code:
song = open("lyrics.txt","r")

word = input("Type a word: ")

d = {word: 0}

for line in song:

if word in line:

d[word] += line.count(word)

print('The word {} appears {} times in this song'

.format(word,d[word]))

DS-GA 1007 | Lecture 1

Thank you!

DS-GA 1007 | Lecture 1

	Course Information
	Introduction to Programming in Python
	What is Programming

