
Policy optimization of language models to align fidelity and
efficiency of generative retrieval in multi-turn dialogues

Jeremy David Curuksu

curukj@amazon.com

Amazon Web Services, Inc., New York, NY, USA

Center for Data Science, New York University, NY, USA

ABSTRACT
Reinforcement learning from human preferences can fine tune

language models for helpfulness and safety, but does not directly

address the fidelity and efficiency of reasoning agents in multi-turn

dialogues. I propose a method to improve the validity, coherence

and efficiency of reasoning agents by defining a reward model as a

mapping between predefined queries and tools which can be ap-

plied to any custom orchestration environment. The reward model

is used for policy optimization to fine tune the clarification fallback

behavior and help the agent learn when best to ask for clarifications

in multi-turn dialogues. This is demonstrated in several orchestra-

tion environments where after fine tuning with either proximal

policy optimization or verbal reinforcement, the new policy sys-

tematically identifies the correct intents and tools in < 2 steps in

over 99% of all sampled dialogues.
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1 INTRODUCTION
Combining large languages models (LM) with policy optimization

based on human preferences has recently led to new generations

of chatbots showing human-level capabilities in helpfulness and

safety, with each new release often massively better than previ-

ous LM generations. As shown in [1–3], by using different reward

models for helpfulness and safety, reinforcement learning from

human feedback (RLHF) and AI feedback (RLAIF) can be scaled to

help find a better solution to the tradeoff between helpfulness and

harmlessness. Direct policy optimization (DPO, [4]) leads to simi-

lar improvements by tuning the policy directly from a preference

dataset instead of encoding the dataset into a reward model for

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD 2024, August 25, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

reinforcement learning. In all cases, the improved Pareto frontier

between these two capabilities has been shown to result in more

honest LM by reducing hallucination [1, 2].

RLHF/RLAIF and DPO can fine tune general LM capabilities such

as helpfulness and safety, but cannot directly fine tune the fidelity

and efficiency of LM-based agents for generative retrieval, which

is essential in the context of customer assistants orchestrating pre-

defined sets of intents and possible actions to take. In this context,

the agent must often navigate multi-turn dialogues that end when

the original intent of the user is fulfilled. With new LM generations

reaching human-level capabilities, it has become essential for cus-

tomer assistants (e.g., Alexa, Siri) not just to increase their semantic

capabilities, but to also behave logically and efficiently when the

original intent of the user is ambiguous, in particular in cases where

the intent is ambiguous at first, but simple enough that it can be

disambiguated and solved with a few simple actions. For example,

finding a good doctor in your area may require some clarification

at first, but can be done nearly-perfectly after a few clarifications

and a few clicks on the web, just as a human can do.

In this paper, I propose a method to directly optimize the fi-

delity and efficiency of a LM policy specifically for a predefined

orchestration environment. The proposed method uses a general

reinforcement learning formulation for sequential learning to fine

tune LMs in multi-turn dialogues. This is in contrast to all RLHF,

RLAIF, and DPOmethods used in seminal papers from [1–6], which

treat each turn in a dialogue as independent of each other and thus

do not directly fine tune the strategic behavior of an agent in a

sequential multi-turn dialogue. To directly fine tune the strategic

reasoning capabilities of LMs in a dialogue, I define a reward model

as a global (i.e., non-token based) mapping between some prede-

fined queries and actions. This reward model is then used for policy

optimization to fine tune the clarification fallback behavior in sim-

ulated multi-turn dialogues so the agent can learn when best to

ask for clarifications. A separate LM generates prompt variation

around each query, which increases robustness of the learned poli-

cies and enhances generalization. Despite the main limitation of this

method which is the need to operate in a predefined environment,

this method is very flexible as it can be applied to any customer

assistant orchestrating a finite set of intents and possible actions

i.e., most cases of practical interest.

To demonstrate the efficiency and flexibility of this method, I

apply it on three different orchestration environments. The first is

typical of customer assistants such as Alexa and Siri, where a custom

set of user-intents, each associated to different prompts and slots

(a.k.a. context data), is used to simulate multi-turn dialogues with

a user. The agent is fine-tuned by proximal policy optimization

(PPO, [7]) and learns selection policies across user intents and
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the clarification fallback. Some prompts and slots are voluntarily

ambiguous and so the agent may learn to fall back on asking for

clarification of intent.

In a second experiment, another LM agent interacts with the LM

assistant and emulates the user. This second agent is also fine tuned

by PPO and learns to select prompts that lead to higher reward,

creating a collaborative environment. During PPO, a cooperation

between the two agents emerges and ultimately reaches a Nash

equilibrium [8], as shown in the result section.

In a third experiment, I apply the method to a reasoning-acting

agent (ReAct, [9]), using different queries (create vs. analyze a pic-
ture, compute vs. execute an expression, retrieve one of two related

but different publications) and corresponding tools, and a separate

LM to generate prompt variation around each query. In this or-

chestration environment I apply “verbal” reinforcement learning

(VRL) where the parameters of the LM are frozen and a simple look-

up table of the reward accumulated for each prompt is appended

to the agent’s system prompt, and refreshed at every step during

training. This verbal reinforcement learning was recently proposed

in [10] and enables an LM to “reflect” on and learn from its past

behavior, without ever changing its parameters. VRL was chosen

in this third experiment to showcase the flexibility of the proposed

method and its ability to fine tune reasoning agents using a wide

range of learning algorithms.

In all orchestration environments tested, with either PPO or

VRL algorithm, after fine tuning the policy systematically identifies

the correct intents and tools in < 2 steps in over 99% of sampled

dialogues. In contrast before fine tuning, in those orchestration

environments, the starting policy took > 4 steps on average to

disambiguate intents. This implies the new policy has learned to

strategically fall back on asking for clarification of intent in ambigu-

ous cases, instead of proceeding with a potentially wrong intent.

2 POLICY OPTIMIZATION OF REASONING
AGENTS IN MULTI-TURN DIALOGUES

The general reinforcement learning formulation for sequential

learning in multi-turn dialogues is presented in Fig. 1. An orchestra-

tion environment inherently defines a reward model by mapping

a set of queries to a set of tools for a specific use case. The lack of

determinism and need for fine tuning come from the nuances and

potential ambiguities across the nearly infinite number of possible

ways that a user, in a given natural language, may formulate each

query. So it is assumed that a general pre-trained LM would not

behave perfectly in such orchestration environment (as otherwise

there would be no need for fine tuning). The imperfections are a

direct consequence of potential ambiguity between prompts related

to different intents and imperfect semantic parsing from the LM. In

short, an orchestration setup is assumed to have inherent semantic

pitfalls, which may lead to responses that are invalid, incoherent,

or inefficient.

The goal of the proposed method is to optimize the fallback

of the agent so it systematically asks for clarifications when it is

confused, instead of hallucinating or confidently making a wrong

decision (e.g., invoking a wrong tool, proceeding with a wrong

intent). Due to the deterministic nature of the query-to-action map-

ping in a predefined orchestration environment, an optimal fallback

Figure 1: Fallback policy optimization of reasoning-acting
agents. A custom mapping between 𝑛 queries and 𝑛′ actions
defines the reward model used for fine tuning the agent.

behavior can in principle be learned from an offline explore-exploit

reinforcement learning algorithm.

The reward model shown in Fig 1 can be used as a preference

model for policy optimization as in [1–3, 5, 11], or any other re-

inforcement learning framework [12]. Note that in Fig.1, 𝑛 does

not need to be equal to 𝑛′ as long as each query is unambiguously

mapped to a tool. In this paper I explore a sequential PPO frame-

work learning across sequences of multi-turn dialogues [13], and

verbal reinforcement learning [10]. This method directly fine tunes

the performance of a LM in term of validity, coherence, and effi-

ciency of dialogues, by learning where there are semantic pitfalls in

this specific orchestration setup i.e., when to ask for clarifications

in multi-turn dialogues. The details of the reward model, states,

actions, and simulation setups, are described in the next section for

three different orchestration environments.

3 METHODOLOGY
3.1 Proximal policy optimization of the

clarification fallback
In a first experiment, a custom orchestration environment (sum-

marized in Appendix A) was defined with a hierarchical modular

organization. For example, the intents /pizza and /dessert are found
within the intent /food. These intents can be difficult to disam-

biguate because the prompts used by the user to invoke them may

differ by only one or two tokens. Such prompts would benefit from

asking for clarification of intent. Each intent is also associated with

a variable number of required slots (a.k.a. context data) needed

for fulfillment as in a typical Alexa-like customer assistant setup.

The slots can be ambiguous too as some slots are 100% identical

between different intents, such as Are you looking for pick up or
delivery for all intents within /food. This ambiguity was preserved

to evaluate whether the agent could ultimately learn tradeoffs be-

tween efficiency and coherence i.e., fallback mitigation policies that

start fulfilling slot data while asking for clarifications to determine

the exact nature of the user’s intent. As reported in the result sec-

tion, the PPO agent did learn such emergent strategies by offline

reinforcement learning without the need for human feedback.

An optimal dialogue can be defined as one which is (i) valid:
the agent identifies the correct user intent, (ii) coherent: the agent
solicits appropriate context data as required for fulfilling the user

intent i.e., it does not solicit data not required for fulfillment, and

(iii) efficient: the agent minimizes the time it takes to fulfill the user

intent. In the first experiment, these goals are encoded explicitly

into the following reward function:

𝑟𝑡 = 𝜆1 𝑟
1

𝑡 + 𝜆2 𝑟
2

𝑡 + 𝜆3 𝑟
3

𝑡
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where 𝜆1, 𝜆2, 𝜆3 are preset weights (hyperparameters) associated

to each reward component.

The component 𝑟1𝑡 rewards the agent depending on whether it

identifies the correct intent. The agent can select either of the user

intents, or fall back on asking for clarification instead. If the agent

guesses the user intent correctly, it receives a positive reward (+5).
If the agent guesses the intent incorrectly, it receives a negative

reward (−5). If the agent falls back on the clarification intent, it is

neither rewarded nor penalized by this component i.e., 𝑟1𝑡 = 0.

The component 𝑟2𝑡 rewards the agent depending on whether

it identifies the correct slots. The agent can prompt the user for

either of the predefined slots (shown in Appendix A), or not prompt

the user for any slot. If the agent solicits a valid slot, it receives a

positive reward (+5). If the agent solicits slot-data not required for

fulfillment, it receives a negative reward (−5). If the agent does not
prompt the user for any slot, it is neither rewarded nor penalized

by this component i.e., 𝑟2𝑡 = 0.

The component 𝑟3𝑡 systematically penalizes the agent by a nega-

tive value −1 at every step of the dialogue, so the agent is incen-

tivized to close the dialogue quickly. By simultaneously mitigating

all three goals of validity, coherence and efficiency, the agent tries

to minimize the time it takes to identify the correct intent and so-

licit valid slots. Given some prompts are ambiguous, the agent may

learn to fall back on asking for clarification at any time, for any

prompt.

This explicit formulation of the three goals of validity, coherence

and efficiency in the reward function is replaced by an implicit for-

mulation in the third experiment (see section 3.3). The advantage

of using an explicit formulation is to leverage the full potential

of the reinforcement learning formalism for sequential learning

with potentially delayed reward. To illustrate this, we decouple the

parameters of the actor from the parameters of the LM. The LM

is used exclusively for state representation (i.e., natural language

embeding vector), and the actor is used exclusively to learn optimal

sequential decision-making policies. Any LM encoder can be used

to encode user prompts. I experimented with Amazon Titan and

also a simpler Word2Vec model applied to the entire corpus of the

environment defined by all queries, prompts, and slot requests (Ap-

pendix A). Policies learned were similar when using either encoder,

probably due to the small size of the corpus.

In this orchestration environment the agent takes two actions

simultaneously at every turn of a dialogue: it selects an intent or

falls back on asking for clarification of intent, and asks the user to

fill a slot or does not ask the user to fill a slot. As shown in appendix

A, there are 6 possible intents and 6 possible slots across all intents.

To generate dialogues offline for PPO [7], intents are sampled

uniformly at random and five possible prompts for each intent

(pre-generated by Claude v3 in Amazon Bedrock) are also sampled

uniformly at random. Each episode is a multi-turn dialogue between

the user and the agent, given the user has chosen an intent and the

agent needs to identify this intent (or ask for clarification) and fulfil

it by soliciting valid slots.

3.2 PPO with Nash equilibrium
The above experiment was extended to a multi-agent setup, where

two agents interact with each other: one agent emulates the assis-

tant exactly as described in section 3.1, and one agent emulates the

user. The key difference is when the assistant asks for clarification,

or guesses the intent incorrectly, the user does not select a prompt

randomly as in the experiment above, instead it learns to select

prompts that lead to higher reward during offline PPO simulations.

Each agent becomes the environment from the perspective of the

other agent. The behavior of each agent is learned directly by PPO

from the sampled dialogues. Both agents aim to maximize the same

reward function and thus a cooperation between the two agents is

expected [8], which can result in improved speed and coherence as

confirmed in the result section. The multi-agent setup was created

because in practice, a human user who regularly interacts with a

chatbot tends to use words that the chatbot understands better. That

is, a human user does not maintain a purely uniform and random

choice of words as emulated in the first experiment. Results on

the performance of learned policies in this multi-agent setup are

reported for an identical orchestration environment as in experi-

ment 1 (appendix A) and an identical number of sampled dialogues

(30,000), to easily compare the two experiments, see result section.

3.3 Verbal reinforcement learning of the
clarification fallback

Finally, the method was applied to an LM agent prompted for

reasoning-acting (ReAct, [9]). A ReAct agent engages in self-reflection

before generating a response for the user: the LM first generates an

internal thought, which is a decision to either use a tool or respond

to the user. If it decides to use a tool, the tool is executed and returns

some data which the agent then uses as additional context to gener-

ate another thought. The new thought is again a decision to either

use a tool or respond to the user. This internal reasoning-acting

loop continues until the agent decides it has enough context data to

respond to the user. A key requirement in ReAct [9] is to predefine

a finite set of tools. This is a perfect use case for our method. For

this experiment, a set of 6 queries and 6 corresponding tools define

the reward model (Appendix C). Queries were voluntarily defined

to be ambiguous: create vs. analyze a picture, compute an expres-

sion with a calculator vs. execute an expression with an interpreter,

retrieve a paper on RLHF vs. retrieve a paper on RLAIF.

A separate LM generates prompt variation for each query: 5

promptswere selected per query, again voluntarily selecting prompts

that are very similar between queries. In particular, queries 3-4 and

5-6 share very similar prompts, see Appendix D for details.

In this ReAct orchestration environment, I apply “verbal” rein-

forcement learning where the parameters of the original LM are

frozen, and a simple look-up table of the accumulated reward for

each prompt variation is appended to the agent’s system prompt,

and refreshed at every step during training. VRL was recently pro-

posed in [10] to align a LM by memorizing and reflecting on its

past behavior instead of fine tuning its model parameters. VRL was

chosen here to showcase the flexibility of the proposed method.
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4 RESULTS
4.1 Analysis of fallback proximal policy

optimization in multi-turn dialogues
4.1.1 Detailed PPO simulation setup. The agent emulating the as-

sistant was trained by simulating interactions (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) with
users where 𝑡 is the running number of turns in each dialogue. All

simulated dialogues were generated using a custom OpenAI Gym

environment and the PPO algorithm from the Intel Coach RL li-

brary on Amazon SageMaker, for a total number of interactions

varying from 130,000 to 150,000 and representing a total of 30,000

dialogues. Each simulation was repeated 3 times and run on 36

CPUs using C5 9XL Amazon EC2 instances, taking approximately

5h each. An efficient exploration of state-action space was ensured

by applying an 𝜖-greedy exploration schedule: a search over differ-

ent 𝜖-schedules showed that linearly switching 𝜖 from 10% to 1%

over the first 60,000 interactions led to the best results.

4.1.2 Analysis of User-Agent Interactions in Dialogues Simulated
with PPO. Fig. 2 shows the evolution of accumulated reward in

each dialogue. Three independent trials of 30,000 dialogues were

produced to assess sensitivity to the initial random exploration. Fig.

2 suggests the PPO agent first explores the orchestration environ-

ment, then identifies a policy that mitigates the multiple learning

goals of validity (identify the correct intent), coherence (solicit valid

slots), and efficiency. In all trials, a transition is observed from a

phase of random exploration in the first 10,000 episodes, where

the accumulated reward ranges from −120 to +20, to a phase (final

5,000 dialogues) where the accumulated reward is between −40 and
+20. This indicates that the PPO policy now systematically avoids

certain behaviors when interacting with the user.

Figure 2: Accumulated rewards across 3×30,000 dialogues
sampled with single-agent RL.

Table 1 shows the average proportion of successful dialogues
(i.e., intent fulfilled) and number of steps in successful dialogues,

per intent. Standard errors in parentheses were computed over

the three trials shown in Fig. 2. In the first 5,000 dialogues, 68%

are successful and take > 4 interactions to complete on average.

In the final 5,000 dialogues, 99% are successful and these take at

most 2 steps on average to infer the right intent. Fig. 2 confirms

sub-optimal policies are still occasionally followed i.e., the PPO

policy has not yet fully converged by the end of these simulations.

Appendix B shows a few examples sampled at the beginning

and at the end of the simulations. In some dialogues, the agent

learned to solicit a valid slot even when it felt back on asking the

user for clarification of intent. The agent has thus learned some

original policies which correctly infer slots required for fulfillment

even when the exact intent cannot yet be precisely determined. This

Table 1: Validity and efficiency of sampled dialogues.

Single Agent Multi Agent

0-5K 25-30K 0-5K 25-30K

% success 68 (.8) 99 (.1) 67 (1.4) 100 (0)

Number of steps in successful dialogues:

Intent 1 4.1 (.2) 1.0 (.0) 4.1 (.1) 1.0 (.0)

Intent 2 4.2 (.1) 1.8 (.2) 4.1 (.1) 1.3 (.1)

Intent 3 4.2 (.0) 1.6 (.2) 4.1 (.2) 1.3 (.0)

Intent 4 4.1 (.1) 1.7 (.3) 4.3 (.0) 1.3 (.0)

Intent 5 4.3 (.2) 1.7 (.3) 4.2 (.1) 1.3 (.0)

Intent 6 4.4 (.1) 2.3 (.5) 4.3 (.1) 1.4 (.1)

strategy spontaneously emerged by PPO and allows the agent to

be more efficient i.e., to complete a dialogue with a smaller number

of steps without sacrificing validity and coherence.

4.1.3 Nash Equilibrium in Dialogues Simulated with Multi-Agent
PPO. When the assistant and the user are both PPO agents, a Nash

equilibrium [8] is expected because both agents try to maximize

the same reward function. The only difference compared to the

single-agent experiment above is that the user is also a PPO policy

whose action is to select a prompt within the subset of five prompts

predefined for a given intent.

Figure 3: Accumulated rewards across 3×30,000 dialogues
sampled with multi-agent RL.

As can be seen in Fig. 3, the agent converges toward optimal

policies (reward in range −20 to +20) faster than in the single-agent

simulations (Fig. 2) where the user selects prompts randomly. A

second result observed in multi-agent simulations is that 100%

of the policies followed by the end of the PPO simulations have

a reward ranging between −20 and +20. The standard deviation

observed in the final 5,000 dialogues is significantly smaller in Fig. 3

compared to Fig. 2. Table 1 also reports 100% of dialogues complete

successfully. Thus, the cooperation of the user has eliminated the

sub-optimal policies that were still occasionally observed in the

end of the single-agent PPO simulations.

Table 1 indicates an improvement in efficiency for every intent.

It takes 1.3 steps on average to infer the correct intent, compared

to 1.8 steps in single-agent simulations. This makes sense because

when the user sends prompts better understood by the agent, the

agent less often needs to ask for clarifications. These results indicate

that the PPO agent has identified reproducible policies to fall back

on asking for clarification or infer the correct intent, solicit valid

slots, and minimize the time it takes to fulfill intents.
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4.2 Analysis of fallback policy optimization by
verbal reinforcement learning

4.2.1 Detailed VRL simulation setup. In this third experiment, the

ReAct agent and the agent used to generate prompt variations for

each query both use Anthropic Claude v3 Sonnet available in Ama-

zon Bedrock as backend LM. The ReAct agent was created using

a custom ReAct system prompt and the LangChain react agent

library. This agent was trained by simulating episodes of reflections
which consist in a user prompt followed by reasoning-acting turns

(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1), where 𝑡 is the total number of turns including the

initial user prompt and every ensuing thought (𝑠𝑡 ) and action (𝑎𝑡 )

generated internally until the agent decides to respond to the user.

Every time the agent selects a tool, which can happen more than

once in an episode of reflection, a scalar numerical reward 𝑟𝑡+1 (+1
for valid tool, −1 for invalid tool) is added to the current value of

aggregated reward specifically for the original user prompt that ini-

tiated the agent’s reflection. The latest value (aggregated reward) for

every prompt is stored in a look up table and appended as context

data to the agent system prompt. The agent is instructed to maxi-

mize reward. An 𝜖-greedy exploration is reinforced by temporarily

setting all values to 0 in 5% of user interactions. User queries and

prompts are sampled uniformly at random for 10 epochs. The ag-

gregated reward and number of clarification fallback are reported

for each epoch for each prompt in the next section.

4.2.2 Analysis of Reasoning-Acting Generated in Reflections Simu-
lated with VRL. Fig. 4 shows the evolution of accumulated reward

and the number of times the ReAct agent decided to fall back on

asking for a clarification instead of selecting a tool, in each loop of

reflection initiated by a user prompt. Fig. 4 and Table 2 suggest the

VRL agent first explores the orchestration environment, then identi-

fies prompts which are too ambigous to identify the correct tool and

are worth asking for clarification. For these ambiguous prompts, in

the first few epochs the starting policy repeateadly select a wrong

tool and does not ask for clarification (in other words, it halluci-

nates); in contrast, after only 10 epochs through all prompts and

all queries, the accumulated reward has become sufficiently low

(negative reward) relative to less ambiguous prompts, for the VRL

agent to systematically fall back on asking for clarification instead

of attempting to select a tool. In other words, the VRL agent learned

to follow a policy which is honest, valid and efficient, because it

never again attempts to select a tool when it receives a user prompt

which it was never able to disambiguate in the past.

Note that in the setup described in section 4.2.1, asking for a clar-

ification leads to sample a different prompt for the same query, and

as can be seen in Fig. 4 there are at most three ambiguous prompts

out of five possible prompts for every query. On average, the correct

tool is selected in < 2 steps across all sampled episodes of reflec-

tions. These results are quantitatively similar to the results obtained

in section 4.1 for different orchestration environments using PPO.

Given the prompt variation is itself generated by Claude v3, this

method can directly scale to a much larger number of prompt vari-

ations, queries and tools, in the context of superalignment. Future

work will focus on analyzing the scalabilty of the VRL method, in

particular when combined with predictive function approximation

instead of the table lookup of memorized rewards used here to

prove the concept.

Figure 4: Accumulated reward and number of fallbacks across
10×30 episodes of reflections sampled with VRL. The x-axis
corresponds to the five prompts generated by Claude for each
of the six queries. Epochs 1-10 are listed from top to bottom.

Table 2: Validity and efficiency of sampled reflections.

Before Fine Tuning After Fine Tuning

Reward Fallback Reward Fallback

Query 1 1.2 (.1) 0.0 (.0) 6.4 (1.7) 0.0 (.0)

Query 2 1.0 (.0) 0.0 (.0) 5.0 (.0) 0.0 (.0)

Query 3 1.4 (.2) 0.0 (.0) 9.4 (3.5) 0.0 (.0)

Query 4 -0.4 (1.7) 0.0 (.0) -1.6 (2.1) 4.2 (5.0)

Query 5 1.0 (.0) 0.0 (.0) 5.0 (.0) 0.1 (.1)

Query 6 -1.4 (1.9) 0.0 (.0) -2.0 (5.6) 2.2 (1.8)

5 CONCLUSION
Optimization of the clarification fallback policy was successfully ap-

plied in three different reasoning-acting orchestration tasks, using

PPO to fine tune model parameters, or using VRL to improve tool

retrieval by reflecting on past sampled rewards. In all experiments,

after fine tuning the new policy systematically identifies the correct

intents and tools in < 2 steps in over 99% of sampled dialogues. In

contrast before fine tuning, in those orchestration environments,

the starting policy systematically hallucinated or took > 4 steps

on average to disambiguate intents. This implies the new policy

has learned to strategically fall back on asking for clarification of

intent in ambiguous cases, instead of proceeding with a potentially

wrong intent, and successfully completes dialogues after clarifying

the user intent.

The method proposed in this paper defines a reward model as

a mapping between predefined queries and actions. As a result, it

can directly fine tunes the validity, coherence and efficiency of LM

policies and reasoning agents in multi-turn dialogues, in contrast

to RLHF, RLAIF and DPO methods in common usage. This method

can be applied to any custom orchestration environment.

A limitation of the method is the need to operate in a predefined

orchestration environment, where all possible queries and intents

are known and well-defined. Human preferences have many facets

includingmixed and unclear intents, and intents changing over time.

On the other hand, this may not represent a fundamental limitation

to scale the proposed method because expressing mixed and unclear

intents is typically a byproduct of imperfect communication, not an
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underlying goal or solution to a problem. In practice, most customer

assistants (e.g., Alexa, Siri) do operate in the confine of a finite set

of queries (problems to solve) and possible actions (solutions to

solve problems). Disambiguating which action to take based on

user prompts is precisely what the current method is designed to

help with. Even in the longer-term where LM agents could reach

superhuman capabilities, aligning them will likely benefit from

restraining their control to a finite set of actions chosen by humans,

or at least by some form of AI constitutions [1].

The VRL table lookup approach is unlikely to scale to very large

numbers of queries and tools. Future work will focus on scaling

the proposed method by replacing the table lookup approach by a

function approximation approach, as typically done in the context

of deep reinforcement learning.

A separate LM agent was used to generate prompt variation

around each query, which increases robustness of the learned poli-

cies and enhances generalization. When the adversarial agent is

also a PPO policy incentivized to maximize the same reward as the

assistant, the cooperation between the user and the assistant led to

better dialogues. In practice, human users do not sample prompt

uniformly at random so the cooperation may be more indicative of

actual performance in online setups.

When the reasoning-acting agent needed to take two actions

simultaneously, the agent learned an original policy that asks for

valid context data even when the exact intent is not yet precisely

known. This strategy spontaneoulsy emerged during the PPO sim-

ulations, without human feedback, and so showed potential for

superalignment [1, 3]. The PPO policy found a way to increase

efficiency without sacrificing quality and coherence.
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Intent Corresponding Slots

/navigation No slot

/tutor/piano Location, age, gender, when, how often

/doctor/dentist Location, when

/pharmacy/Advil Location, when, how often, pickup or delivery

/food/pizza When, pickup or delivery

/food/dessert When, pickup or delivery

/clarification No slot

A APPENDIX A.
Map of intents and slots defining the custom orchestration environ-

ment in the two PPO fine tuning experiments (sections 3.1-3.2). Note

this use case is made of exactly 6 possible intents for the agent to

choose from (7 including the clarification action) and 6 possible slots
(7 including the no slot action). The complete JSON file mapping all

prompts to all intents and slot request (resulting in approximately

1230 possible combinations of prompts and slot requests for the RL

agent to explore i.e., 7 intents×5 prompts×7 slot requests×5 slots)
is available upon request to the author.

B APPENDIX B.
Sample of user-PPO agent interactions before training (a), after an

optimal policy has been identified by single agent PPO (b, c), and

after an optimal policy has been identified by multi-agent PPO (d,

e). The validity of every action taken at every step by the PPO agent

is shown above each sampled dialogue.

C APPENDIX C.
Map of queries and tools in the custom orchestration environment

used to define the reward model for VRL in the third experiment

(section 3.3).

D APPENDIX D.
Prompts generated using Claude v3 Sonnet in Amazon Bedrock for

all queries in the custom orchestration environment used for the

VRL experiment (section 3.3).

"query": 1,
"prompts": [
"Please generate an image depicting several dogs running on a

beach",

"I would like you to create a picture with multiple dogs playing on

the sand near the ocean",

"Can you make an image showing a few dogs running and playing

on the seashore?",

"Create a drawing of multiple canines racing across the sand close

to the water",

"Produce an illustration displaying numerous dogs sprinting near

the tide by the beach" ],

"query": 2,
"prompts": [
"On the given picture, determine the number of dogs that are run-

ning on the beach",

"Please examine the provided image and count the quantity of dogs

that are dashing on the seashore",

"Can you inspect the shown illustration and enumerate how many

canines there are sprinting on the sand?",

"I need you to visually analyze the displayed graphic and tally the

amount of dogs that are jogging along the beach",

"Kindly check the presented picture and calculate the total number

of dogs that are active on the seaside" ],

"query": 3,
"prompts": [
"Calculate the result of the mathematical expression: 5 plus 5 plus

10",

"Can you determine the solution when 5 is added to 5 and then 10

is added to that result?",

"I would like you to compute the total of 5 added to 5, with 10 added

to that sum",

"Find the end quantity when 5 plus 5 is summed with 10",

"Derive the final value when 5 plus 5 plus 10 are combined together

through addition" ],

"query": 4,
"prompts": [
"Calculate the result of the expression 5 plus 5 plus 10.",

"With i initially 0, iterate four times over this loop: i = i + 5, and

tell me the output",

"Let i begin at 0. Repeat this process four times: add 5 to the current

value of i. Inform me of i’s value at the end.",

"Initialize i to 0. Perform the following operation four times: i = i +

5. Communicate the resulting value of i to me.",

"With i initially assigned the value 0, cycle through this loop four

times: i += 5. Report the ultimate value of i." ],

"query": 5,
"prompts": [
"What process did Anthropic use to adapt and adjust the harmful

language detection of their large language model?",

"Please describe Anthropic’s methodology to specialize and opti-

mize the identification of toxic statements within their LLM",
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"Can you explain the technique Anthropic leveraged to refine and

enhance the labeling of problematic linguistic content by their AI

model?",

"I would like you to delineate the approach taken by Anthropic

to tune and hone the classification of offensive language by their

generative model",

"How did Anthropic fine tuned the toxicity of their LLM?" ],

"query": 6,
"prompts": [
"What methods did Anthropic utilize to expand and amplify the

precision training for recognizing harmful language across their

large language model?",

"Please discuss Anthropic’s tactics to broaden and multiply the

selective optimization of toxic content detection within their LLM",

"Can you clarify the procedures used by Anthropic to scale up and

increase the specialized refinement of problematic text identifica-

tion by their AI system?",

"Describe how Anthropic was able to grow and augment the cus-

tomized enhancement of offensive speech classification across their

generative neural network",

"How did Anthropic scaled the fine tuning of the toxicity of their

LLM?" ]
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