Policy optimization of language models to align fidelity and
efficiency of generative retrieval in multi-turn dialogues

Jeremy David Curuksu
curukj@amazon.com
Amazon Web Services, Inc., New York, NY, USA
Center for Data Science, New York University, NY, USA

ABSTRACT

Reinforcement learning from human preferences can fine tune
language models for helpfulness and safety, but does not directly
address the fidelity and efficiency of reasoning agents in multi-turn
dialogues. I propose a method to improve the validity, coherence
and efficiency of reasoning agents by defining a reward model as a
mapping between predefined queries and tools which can be ap-
plied to any custom orchestration environment. The reward model
is used for policy optimization to fine tune the clarification fallback
behavior and help the agent learn when best to ask for clarifications
in multi-turn dialogues. This is demonstrated in several orchestra-
tion environments where after fine tuning with either proximal
policy optimization or verbal reinforcement, the new policy sys-
tematically identifies the correct intents and tools in < 2 steps in
over 99% of all sampled dialogues.

KEYWORDS

Large language models, fine tuning, policy optimization, multi-turn
dialogues, generative retrieval, reasoning-acting agents

ACM Reference Format:

Jeremy David Curuksu. 2024. Policy optimization of language models to
align fidelity and efficiency of generative retrieval in multi-turn dialogues.
In Proceedings of Workshop on Generative Al for Recommender Systems and
Personalization (KDD 2024). ACM, New York, NY, USA, 8 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Combining large languages models (LM) with policy optimization
based on human preferences has recently led to new generations
of chatbots showing human-level capabilities in helpfulness and
safety, with each new release often massively better than previ-
ous LM generations. As shown in [1-3], by using different reward
models for helpfulness and safety, reinforcement learning from
human feedback (RLHF) and Al feedback (RLAIF) can be scaled to
help find a better solution to the tradeoff between helpfulness and
harmlessness. Direct policy optimization (DPO, [4]) leads to simi-
lar improvements by tuning the policy directly from a preference
dataset instead of encoding the dataset into a reward model for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD 2024, August 25, 2024, Barcelona, Spain

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

reinforcement learning. In all cases, the improved Pareto frontier
between these two capabilities has been shown to result in more
honest LM by reducing hallucination [1, 2].

RLHF/RLAIF and DPO can fine tune general LM capabilities such
as helpfulness and safety, but cannot directly fine tune the fidelity
and efficiency of LM-based agents for generative retrieval, which
is essential in the context of customer assistants orchestrating pre-
defined sets of intents and possible actions to take. In this context,
the agent must often navigate multi-turn dialogues that end when
the original intent of the user is fulfilled. With new LM generations
reaching human-level capabilities, it has become essential for cus-
tomer assistants (e.g., Alexa, Siri) not just to increase their semantic
capabilities, but to also behave logically and efficiently when the
original intent of the user is ambiguous, in particular in cases where
the intent is ambiguous at first, but simple enough that it can be
disambiguated and solved with a few simple actions. For example,
finding a good doctor in your area may require some clarification
at first, but can be done nearly-perfectly after a few clarifications
and a few clicks on the web, just as a human can do.

In this paper, I propose a method to directly optimize the fi-
delity and efficiency of a LM policy specifically for a predefined
orchestration environment. The proposed method uses a general
reinforcement learning formulation for sequential learning to fine
tune LMs in multi-turn dialogues. This is in contrast to all RLHF,
RLATIF, and DPO methods used in seminal papers from [1-6], which
treat each turn in a dialogue as independent of each other and thus
do not directly fine tune the strategic behavior of an agent in a
sequential multi-turn dialogue. To directly fine tune the strategic
reasoning capabilities of LMs in a dialogue, I define a reward model
as a global (i.e., non-token based) mapping between some prede-
fined queries and actions. This reward model is then used for policy
optimization to fine tune the clarification fallback behavior in sim-
ulated multi-turn dialogues so the agent can learn when best to
ask for clarifications. A separate LM generates prompt variation
around each query, which increases robustness of the learned poli-
cies and enhances generalization. Despite the main limitation of this
method which is the need to operate in a predefined environment,
this method is very flexible as it can be applied to any customer
assistant orchestrating a finite set of intents and possible actions
i.e., most cases of practical interest.

To demonstrate the efficiency and flexibility of this method, I
apply it on three different orchestration environments. The first is
typical of customer assistants such as Alexa and Siri, where a custom
set of user-intents, each associated to different prompts and slots
(a.k.a. context data), is used to simulate multi-turn dialogues with
a user. The agent is fine-tuned by proximal policy optimization
(PPO, [7]) and learns selection policies across user intents and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KDD 2024, August 25, 2024, Barcelona, Spain

the clarification fallback. Some prompts and slots are voluntarily
ambiguous and so the agent may learn to fall back on asking for
clarification of intent.

In a second experiment, another LM agent interacts with the LM
assistant and emulates the user. This second agent is also fine tuned
by PPO and learns to select prompts that lead to higher reward,
creating a collaborative environment. During PPO, a cooperation
between the two agents emerges and ultimately reaches a Nash
equilibrium [8], as shown in the result section.

In a third experiment, I apply the method to a reasoning-acting
agent (ReAct, [9]), using different queries (create vs. analyze a pic-
ture, compute vs. execute an expression, retrieve one of two related
but different publications) and corresponding tools, and a separate
LM to generate prompt variation around each query. In this or-
chestration environment I apply “verbal” reinforcement learning
(VRL) where the parameters of the LM are frozen and a simple look-
up table of the reward accumulated for each prompt is appended
to the agent’s system prompt, and refreshed at every step during
training. This verbal reinforcement learning was recently proposed
in [10] and enables an LM to “reflect” on and learn from its past
behavior, without ever changing its parameters. VRL was chosen
in this third experiment to showcase the flexibility of the proposed
method and its ability to fine tune reasoning agents using a wide
range of learning algorithms.

In all orchestration environments tested, with either PPO or
VRL algorithm, after fine tuning the policy systematically identifies
the correct intents and tools in < 2 steps in over 99% of sampled
dialogues. In contrast before fine tuning, in those orchestration
environments, the starting policy took > 4 steps on average to
disambiguate intents. This implies the new policy has learned to
strategically fall back on asking for clarification of intent in ambigu-
ous cases, instead of proceeding with a potentially wrong intent.

2 POLICY OPTIMIZATION OF REASONING
AGENTS IN MULTI-TURN DIALOGUES

The general reinforcement learning formulation for sequential
learning in multi-turn dialogues is presented in Fig. 1. An orchestra-
tion environment inherently defines a reward model by mapping
a set of queries to a set of tools for a specific use case. The lack of
determinism and need for fine tuning come from the nuances and
potential ambiguities across the nearly infinite number of possible
ways that a user, in a given natural language, may formulate each
query. So it is assumed that a general pre-trained LM would not
behave perfectly in such orchestration environment (as otherwise
there would be no need for fine tuning). The imperfections are a
direct consequence of potential ambiguity between prompts related
to different intents and imperfect semantic parsing from the LM. In
short, an orchestration setup is assumed to have inherent semantic
pitfalls, which may lead to responses that are invalid, incoherent,
or inefficient.

The goal of the proposed method is to optimize the fallback
of the agent so it systematically asks for clarifications when it is
confused, instead of hallucinating or confidently making a wrong
decision (e.g., invoking a wrong tool, proceeding with a wrong
intent). Due to the deterministic nature of the query-to-action map-
ping in a predefined orchestration environment, an optimal fallback

Jeremy David Curuksu

Query3

Reward Model

LM Reasoning-
Acting Agent
(Assistant)

Fall back

wm
(User)

Queryn

Figure 1: Fallback policy optimization of reasoning-acting
agents. A custom mapping between n queries and n’ actions
defines the reward model used for fine tuning the agent.

behavior can in principle be learned from an offline explore-exploit
reinforcement learning algorithm.

The reward model shown in Fig 1 can be used as a preference
model for policy optimization as in [1-3, 5, 11], or any other re-
inforcement learning framework [12]. Note that in Fig.1, n does
not need to be equal to n’ as long as each query is unambiguously
mapped to a tool. In this paper I explore a sequential PPO frame-
work learning across sequences of multi-turn dialogues [13], and
verbal reinforcement learning [10]. This method directly fine tunes
the performance of a LM in term of validity, coherence, and effi-
ciency of dialogues, by learning where there are semantic pitfalls in
this specific orchestration setup i.e., when to ask for clarifications
in multi-turn dialogues. The details of the reward model, states,
actions, and simulation setups, are described in the next section for
three different orchestration environments.

3 METHODOLOGY

3.1 Proximal policy optimization of the
clarification fallback

In a first experiment, a custom orchestration environment (sum-
marized in Appendix A) was defined with a hierarchical modular
organization. For example, the intents /pizza and /dessert are found
within the intent /food. These intents can be difficult to disam-
biguate because the prompts used by the user to invoke them may
differ by only one or two tokens. Such prompts would benefit from
asking for clarification of intent. Each intent is also associated with
a variable number of required slots (a.k.a. context data) needed
for fulfillment as in a typical Alexa-like customer assistant setup.
The slots can be ambiguous too as some slots are 100% identical
between different intents, such as Are you looking for pick up or
delivery for all intents within /food. This ambiguity was preserved
to evaluate whether the agent could ultimately learn tradeoffs be-
tween efficiency and coherence i.e., fallback mitigation policies that
start fulfilling slot data while asking for clarifications to determine
the exact nature of the user’s intent. As reported in the result sec-
tion, the PPO agent did learn such emergent strategies by offline
reinforcement learning without the need for human feedback.

An optimal dialogue can be defined as one which is (i) valid:
the agent identifies the correct user intent, (ii) coherent: the agent
solicits appropriate context data as required for fulfilling the user
intent i.e., it does not solicit data not required for fulfillment, and
(iii) efficient: the agent minimizes the time it takes to fulfill the user
intent. In the first experiment, these goals are encoded explicitly
into the following reward function:

re=Mr} +/12r? +/13r?

Policy optimization of language models to align fidelity and efficiency of generative retrieval in multi-turn dialogues

where A1, A2, A3 are preset weights (hyperparameters) associated
to each reward component.

The component rt1 rewards the agent depending on whether it
identifies the correct intent. The agent can select either of the user
intents, or fall back on asking for clarification instead. If the agent
guesses the user intent correctly, it receives a positive reward (+5).
If the agent guesses the intent incorrectly, it receives a negative
reward (—5). If the agent falls back on the clarification intent, it is
neither rewarded nor penalized by this component i.e., rt1 =0.

The component rt2 rewards the agent depending on whether
it identifies the correct slots. The agent can prompt the user for
either of the predefined slots (shown in Appendix A), or not prompt
the user for any slot. If the agent solicits a valid slot, it receives a
positive reward (+5). If the agent solicits slot-data not required for
fulfillment, it receives a negative reward (—5). If the agent does not
prompt the user for any slot, it is neither rewarded nor penalized
by this component i.e., r? =0.

The component r? systematically penalizes the agent by a nega-
tive value —1 at every step of the dialogue, so the agent is incen-
tivized to close the dialogue quickly. By simultaneously mitigating
all three goals of validity, coherence and efficiency, the agent tries
to minimize the time it takes to identify the correct intent and so-
licit valid slots. Given some prompts are ambiguous, the agent may
learn to fall back on asking for clarification at any time, for any
prompt.

This explicit formulation of the three goals of validity, coherence
and efficiency in the reward function is replaced by an implicit for-
mulation in the third experiment (see section 3.3). The advantage
of using an explicit formulation is to leverage the full potential
of the reinforcement learning formalism for sequential learning
with potentially delayed reward. To illustrate this, we decouple the
parameters of the actor from the parameters of the LM. The LM
is used exclusively for state representation (i.e., natural language
embeding vector), and the actor is used exclusively to learn optimal
sequential decision-making policies. Any LM encoder can be used
to encode user prompts. I experimented with Amazon Titan and
also a simpler Word2Vec model applied to the entire corpus of the
environment defined by all queries, prompts, and slot requests (Ap-
pendix A). Policies learned were similar when using either encoder,
probably due to the small size of the corpus.

In this orchestration environment the agent takes two actions
simultaneously at every turn of a dialogue: it selects an intent or
falls back on asking for clarification of intent, and asks the user to
fill a slot or does not ask the user to fill a slot. As shown in appendix
A, there are 6 possible intents and 6 possible slots across all intents.

To generate dialogues offline for PPO [7], intents are sampled
uniformly at random and five possible prompts for each intent
(pre-generated by Claude v3 in Amazon Bedrock) are also sampled
uniformly at random. Each episode is a multi-turn dialogue between
the user and the agent, given the user has chosen an intent and the
agent needs to identify this intent (or ask for clarification) and fulfil
it by soliciting valid slots.

KDD 2024, August 25, 2024, Barcelona, Spain

3.2 PPO with Nash equilibrium

The above experiment was extended to a multi-agent setup, where
two agents interact with each other: one agent emulates the assis-
tant exactly as described in section 3.1, and one agent emulates the
user. The key difference is when the assistant asks for clarification,
or guesses the intent incorrectly, the user does not select a prompt
randomly as in the experiment above, instead it learns to select
prompts that lead to higher reward during offline PPO simulations.

Each agent becomes the environment from the perspective of the
other agent. The behavior of each agent is learned directly by PPO
from the sampled dialogues. Both agents aim to maximize the same
reward function and thus a cooperation between the two agents is
expected [8], which can result in improved speed and coherence as
confirmed in the result section. The multi-agent setup was created
because in practice, a human user who regularly interacts with a
chatbot tends to use words that the chatbot understands better. That
is, a human user does not maintain a purely uniform and random
choice of words as emulated in the first experiment. Results on
the performance of learned policies in this multi-agent setup are
reported for an identical orchestration environment as in experi-
ment 1 (appendix A) and an identical number of sampled dialogues
(30,000), to easily compare the two experiments, see result section.

3.3 Verbal reinforcement learning of the
clarification fallback

Finally, the method was applied to an LM agent prompted for
reasoning-acting (ReAct, [9]). A ReAct agent engages in self-reflection
before generating a response for the user: the LM first generates an
internal thought, which is a decision to either use a tool or respond
to the user. If it decides to use a tool, the tool is executed and returns
some data which the agent then uses as additional context to gener-
ate another thought. The new thought is again a decision to either
use a tool or respond to the user. This internal reasoning-acting
loop continues until the agent decides it has enough context data to
respond to the user. A key requirement in ReAct [9] is to predefine
a finite set of tools. This is a perfect use case for our method. For
this experiment, a set of 6 queries and 6 corresponding tools define
the reward model (Appendix C). Queries were voluntarily defined
to be ambiguous: create vs. analyze a picture, compute an expres-
sion with a calculator vs. execute an expression with an interpreter,
retrieve a paper on RLHF vs. retrieve a paper on RLAIF.

A separate LM generates prompt variation for each query: 5
prompts were selected per query, again voluntarily selecting prompts
that are very similar between queries. In particular, queries 3-4 and
5-6 share very similar prompts, see Appendix D for details.

In this ReAct orchestration environment, I apply “verbal” rein-
forcement learning where the parameters of the original LM are
frozen, and a simple look-up table of the accumulated reward for
each prompt variation is appended to the agent’s system prompt,
and refreshed at every step during training. VRL was recently pro-
posed in [10] to align a LM by memorizing and reflecting on its
past behavior instead of fine tuning its model parameters. VRL was
chosen here to showcase the flexibility of the proposed method.

KDD 2024, August 25, 2024, Barcelona, Spain

4 RESULTS

4.1 Analysis of fallback proximal policy
optimization in multi-turn dialogues

4.1.1 Detailed PPO simulation setup. The agent emulating the as-
sistant was trained by simulating interactions (s, ar, rr+1, St+1) with
users where ¢ is the running number of turns in each dialogue. All
simulated dialogues were generated using a custom OpenAl Gym
environment and the PPO algorithm from the Intel Coach RL li-
brary on Amazon SageMaker, for a total number of interactions
varying from 130,000 to 150,000 and representing a total of 30,000
dialogues. Each simulation was repeated 3 times and run on 36
CPUs using C5 9XL Amazon EC2 instances, taking approximately
5h each. An efficient exploration of state-action space was ensured
by applying an e-greedy exploration schedule: a search over differ-
ent e-schedules showed that linearly switching e from 10% to 1%
over the first 60,000 interactions led to the best results.

4.1.2 Analysis of User-Agent Interactions in Dialogues Simulated
with PPO. Fig. 2 shows the evolution of accumulated reward in
each dialogue. Three independent trials of 30,000 dialogues were
produced to assess sensitivity to the initial random exploration. Fig.
2 suggests the PPO agent first explores the orchestration environ-
ment, then identifies a policy that mitigates the multiple learning
goals of validity (identify the correct intent), coherence (solicit valid
slots), and efficiency. In all trials, a transition is observed from a
phase of random exploration in the first 10,000 episodes, where
the accumulated reward ranges from —120 to +20, to a phase (final
5,000 dialogues) where the accumulated reward is between —40 and
+20. This indicates that the PPO policy now systematically avoids
certain behaviors when interacting with the user.

Accumulated Reward

0 S000 10000 15000 20000 25000 30000 O 5000 10000 15000 20000 25000 30000 O 5000 10000 15000 20000 25000 30000
Episode Index Episode Index Episode Index

Figure 2: Accumulated rewards across 3x30,000 dialogues
sampled with single-agent RL.

Table 1 shows the average proportion of successful dialogues
(i-e., intent fulfilled) and number of steps in successful dialogues,
per intent. Standard errors in parentheses were computed over
the three trials shown in Fig. 2. In the first 5,000 dialogues, 68%
are successful and take > 4 interactions to complete on average.
In the final 5,000 dialogues, 99% are successful and these take at
most 2 steps on average to infer the right intent. Fig. 2 confirms
sub-optimal policies are still occasionally followed i.e., the PPO
policy has not yet fully converged by the end of these simulations.

Appendix B shows a few examples sampled at the beginning
and at the end of the simulations. In some dialogues, the agent
learned to solicit a valid slot even when it felt back on asking the
user for clarification of intent. The agent has thus learned some
original policies which correctly infer slots required for fulfillment
even when the exact intent cannot yet be precisely determined. This

Jeremy David Curuksu

Table 1: Validity and efficiency of sampled dialogues.

SINGLE AGENT MurTi AGENT
0-5K 25-30K 0-5K 25-30K

% SUCCESS 68 (.8) 99(.1) 67 (1.4) 100 (0)
NUMBER OF STEPS IN SUCCESSFUL DIALOGUES:
INTENT1 4.1(2) 1.0(0) 41(1) 1.0(.0)

)
INTENT 2 4.2(1) 1.8(2) 41(1) 13(1)
INTENT3 4.2(0) 1.6(2) 41(2) 13(0)
INTENT4 41(1) 17(3) 43(0) 13(0)
INTENT5 43(2) 1.7(3) 42(1) 13(0)
INTENT 6 44 (1) 23(5) 43(1) 14(1)

strategy spontaneously emerged by PPO and allows the agent to
be more efficient i.e., to complete a dialogue with a smaller number
of steps without sacrificing validity and coherence.

4.1.3 Nash Equilibrium in Dialogues Simulated with Multi-Agent
PPO. When the assistant and the user are both PPO agents, a Nash
equilibrium [8] is expected because both agents try to maximize
the same reward function. The only difference compared to the
single-agent experiment above is that the user is also a PPO policy
whose action is to select a prompt within the subset of five prompts
predefined for a given intent.

Accumulated Reward

0 5000 10000 15000 20000 25000 30000 O S000 10000 15000 20000 25000 30000 O 5000 10000 15000 20000 25000 30000
Episode Index Episode Index Episode Index

Figure 3: Accumulated rewards across 3x30,000 dialogues
sampled with multi-agent RL.

As can be seen in Fig. 3, the agent converges toward optimal
policies (reward in range —20 to +20) faster than in the single-agent
simulations (Fig. 2) where the user selects prompts randomly. A
second result observed in multi-agent simulations is that 100%
of the policies followed by the end of the PPO simulations have
a reward ranging between —20 and +20. The standard deviation
observed in the final 5,000 dialogues is significantly smaller in Fig. 3
compared to Fig. 2. Table 1 also reports 100% of dialogues complete
successfully. Thus, the cooperation of the user has eliminated the
sub-optimal policies that were still occasionally observed in the
end of the single-agent PPO simulations.

Table 1 indicates an improvement in efficiency for every intent.
It takes 1.3 steps on average to infer the correct intent, compared
to 1.8 steps in single-agent simulations. This makes sense because
when the user sends prompts better understood by the agent, the
agent less often needs to ask for clarifications. These results indicate
that the PPO agent has identified reproducible policies to fall back
on asking for clarification or infer the correct intent, solicit valid
slots, and minimize the time it takes to fulfill intents.

Policy optimization of language models to align fidelity and efficiency of generative retrieval in multi-turn dialogues

4.2 Analysis of fallback policy optimization by
verbal reinforcement learning

4.2.1 Detailed VRL simulation setup. In this third experiment, the
ReAct agent and the agent used to generate prompt variations for
each query both use Anthropic Claude v3 Sonnet available in Ama-
zon Bedrock as backend LM. The ReAct agent was created using
a custom ReAct system prompt and the LangChain react agent
library. This agent was trained by simulating episodes of reflections
which consist in a user prompt followed by reasoning-acting turns
(Sz, ar, rt+1, Sr+1), where ¢ is the total number of turns including the
initial user prompt and every ensuing thought (s;) and action (a;)
generated internally until the agent decides to respond to the user.
Every time the agent selects a tool, which can happen more than
once in an episode of reflection, a scalar numerical reward 41 (+1
for valid tool, —1 for invalid tool) is added to the current value of
aggregated reward specifically for the original user prompt that ini-
tiated the agent’s reflection. The latest value (aggregated reward) for
every prompt is stored in a look up table and appended as context
data to the agent system prompt. The agent is instructed to maxi-
mize reward. An e-greedy exploration is reinforced by temporarily
setting all values to 0 in 5% of user interactions. User queries and
prompts are sampled uniformly at random for 10 epochs. The ag-
gregated reward and number of clarification fallback are reported
for each epoch for each prompt in the next section.

4.2.2 Analysis of Reasoning-Acting Generated in Reflections Simu-
lated with VRL. Fig. 4 shows the evolution of accumulated reward
and the number of times the ReAct agent decided to fall back on
asking for a clarification instead of selecting a tool, in each loop of
reflection initiated by a user prompt. Fig. 4 and Table 2 suggest the
VRL agent first explores the orchestration environment, then identi-
fies prompts which are too ambigous to identify the correct tool and
are worth asking for clarification. For these ambiguous prompts, in
the first few epochs the starting policy repeateadly select a wrong
tool and does not ask for clarification (in other words, it halluci-
nates); in contrast, after only 10 epochs through all prompts and
all queries, the accumulated reward has become sufficiently low
(negative reward) relative to less ambiguous prompts, for the VRL
agent to systematically fall back on asking for clarification instead
of attempting to select a tool. In other words, the VRL agent learned
to follow a policy which is honest, valid and efficient, because it
never again attempts to select a tool when it receives a user prompt
which it was never able to disambiguate in the past.

Note that in the setup described in section 4.2.1, asking for a clar-
ification leads to sample a different prompt for the same query, and
as can be seen in Fig. 4 there are at most three ambiguous prompts
out of five possible prompts for every query. On average, the correct
tool is selected in < 2 steps across all sampled episodes of reflec-
tions. These results are quantitatively similar to the results obtained
in section 4.1 for different orchestration environments using PPO.
Given the prompt variation is itself generated by Claude v3, this
method can directly scale to a much larger number of prompt vari-
ations, queries and tools, in the context of superalignment. Future
work will focus on analyzing the scalabilty of the VRL method, in
particular when combined with predictive function approximation
instead of the table lookup of memorized rewards used here to
prove the concept.

KDD 2024, August 25, 2024, Barcelona, Spain

BEFORE FINE TUNING (EPOCHS 1-5) AFTER FINE TUNING (EPOCHS 6-10)

2 20
B 104 I
Y 04 L] -
3 -10]
3 E
15 »
m 2 I
s 10!
o -~ . o | - mEEE
b -10]
15 0
b 201
H 101 I
o | L] — ol - mEEE
= 1]
15 201
b I 1
H 101 I
H [] MLl o] - ENuEEE
= -10]
10 - . 0l . . .
15 »
10 I 2
H L pEeE | o | I
3
101

i 10

Queyl Qw2 Queya | Quwa | Queys | Quiys Quiyl Quyz Quy3 | Qund | Geys | Quee

[Accumulated Reward [Number of Fallbacks

Figure 4: Accumulated reward and number of fallbacks across
10x30 episodes of reflections sampled with VRL. The x-axis
corresponds to the five prompts generated by Claude for each
of the six queries. Epochs 1-10 are listed from top to bottom.

Table 2: Validity and efficiency of sampled reflections.

BeroRE FINE TUNING AFTER FINE TUNING
REwWARD FALLBACK REWARD FALLBACK

QUERY 1 1.2(.1) 0.0 (.0) 6.4(1.7) 0.0 (.0)
QuUERY2 1.0(0) 0.0(.0) 50(0) 0.0 (.0)
QUERY3 14(2) 0.0(.0) 9.4(3.5) 0.0 (.0)
QuERY4 -04(L7) 00(0) -1.6(21) 42(5.0)
QuERY5 1.0(0) 0.0(.0) 50(0) 0.1(1)
QUERY 6 -14(1.9) 0.0(0) -20(56) 22(1.8)

5 CONCLUSION

Optimization of the clarification fallback policy was successfully ap-
plied in three different reasoning-acting orchestration tasks, using
PPO to fine tune model parameters, or using VRL to improve tool
retrieval by reflecting on past sampled rewards. In all experiments,
after fine tuning the new policy systematically identifies the correct
intents and tools in < 2 steps in over 99% of sampled dialogues. In
contrast before fine tuning, in those orchestration environments,
the starting policy systematically hallucinated or took > 4 steps
on average to disambiguate intents. This implies the new policy
has learned to strategically fall back on asking for clarification of
intent in ambiguous cases, instead of proceeding with a potentially
wrong intent, and successfully completes dialogues after clarifying
the user intent.

The method proposed in this paper defines a reward model as
a mapping between predefined queries and actions. As a result, it
can directly fine tunes the validity, coherence and efficiency of LM
policies and reasoning agents in multi-turn dialogues, in contrast
to RLHF, RLAIF and DPO methods in common usage. This method
can be applied to any custom orchestration environment.

A limitation of the method is the need to operate in a predefined
orchestration environment, where all possible queries and intents
are known and well-defined. Human preferences have many facets
including mixed and unclear intents, and intents changing over time.
On the other hand, this may not represent a fundamental limitation
to scale the proposed method because expressing mixed and unclear
intents is typically a byproduct of imperfect communication, not an

KDD 2024, August 25, 2024, Barcelona, Spain

underlying goal or solution to a problem. In practice, most customer
assistants (e.g., Alexa, Siri) do operate in the confine of a finite set
of queries (problems to solve) and possible actions (solutions to
solve problems). Disambiguating which action to take based on
user prompts is precisely what the current method is designed to
help with. Even in the longer-term where LM agents could reach
superhuman capabilities, aligning them will likely benefit from
restraining their control to a finite set of actions chosen by humans,
or at least by some form of Al constitutions [1].

The VRL table lookup approach is unlikely to scale to very large
numbers of queries and tools. Future work will focus on scaling
the proposed method by replacing the table lookup approach by a
function approximation approach, as typically done in the context
of deep reinforcement learning.

A separate LM agent was used to generate prompt variation
around each query, which increases robustness of the learned poli-
cies and enhances generalization. When the adversarial agent is
also a PPO policy incentivized to maximize the same reward as the
assistant, the cooperation between the user and the assistant led to
better dialogues. In practice, human users do not sample prompt
uniformly at random so the cooperation may be more indicative of
actual performance in online setups.

When the reasoning-acting agent needed to take two actions
simultaneously, the agent learned an original policy that asks for
valid context data even when the exact intent is not yet precisely
known. This strategy spontaneoulsy emerged during the PPO sim-
ulations, without human feedback, and so showed potential for
superalignment [1, 3]. The PPO policy found a way to increase
efficiency without sacrificing quality and coherence.

ACKNOWLEDGMENTS

The author thanks Amazon Web Services for compute resources.

REFERENCES

[1] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion,
Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKin-
non, et al. Constitutional ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073, 2022.

[2] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023.

[3] Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard,
Colton Bishop, Victor Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement
learning from human feedback with ai feedback. arXiv preprint arXiv:2309.00267,
2023.

[4] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano

Ermon, and Chelsea Finn. Direct preference optimization: Your language model

is secretly a reward model. Advances in Neural Information Processing Systems,

36, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea

Voss, Alec Radford, Dario Amodei, and Paul F Christiano. Learning to summarize

with human feedback. Advances in Neural Information Processing Systems, 33:3008—

3021, 2020.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Train-

ing language models to follow instructions with human feedback. Advances in

neural information processing systems, 35:27730-27744, 2022.

[7] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[8] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
and T. Lillicrap. A general reinforcement learning algorithm that masters chess,
shogi and go through self-play. Science, 362(6419):1140-1144, 2018.

(5

=

(6

=

Jeremy David Curuksu

[9] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. React: Synergizing reasoning and acting in language models.
arXiv preprint arXiv:2210.03629, 2022.

[10] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning.
Advances in Neural Information Processing Systems, 36, 2024.

[11] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario

Amodei. Deep reinforcement learning from human preferences. Advances in

neural information processing systems, 30, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Ju-

rafsky. Deep reinforcement learning for dialogue generation. arXiv preprint

arXiv:1606.01541, 2016.

[12

[13

Policy optimization of language models to align fidelity and efficiency of generative retrieval in multi-turn dialogues

INTENT CORRESPONDING SLOTS

/NAVIGATION No srLot

/TUTOR/PIANO LOCATION, AGE, GENDER, WHEN, HOW OFTEN
/DOCTOR/DENTIST LOCATION, WHEN

/PHARMACY/ADVIL LOCATION, WHEN, HOW OFTEN, PICKUP OR DELIVERY

/FOOD/P1ZZA WHEN, PICKUP OR DELIVERY
/FOOD/DESSERT WHEN, PICKUP OR DELIVERY
/CLARIFICATION No srLot

A APPENDIX A.

Map of intents and slots defining the custom orchestration environ-
ment in the two PPO fine tuning experiments (sections 3.1-3.2). Note
this use case is made of exactly 6 possible intents for the agent to
choose from (7 including the clarification action) and 6 possible slots
(7 including the no slot action). The complete JSON file mapping all
prompts to all intents and slot request (resulting in approximately
1230 possible combinations of prompts and slot requests for the RL
agent to explore i.e., 7 intents X5 prompts X 7 slot requests X 5 slots)
is available upon request to the author.

Fubk| o w

Invald

What anyou do?

Nove. Whathelp doyou provce? . ool
Ve User s sl

i | [o— [0ser s s
ok)

User i o]

13mooking o aan iz

I nesda dentfor my et Z)
Ve ser il st Rt User il st
Nevermic. €5 akingtalong Thankyou!

| ekt Tkt

(@) () © (CY (e)

B APPENDIX B.

Sample of user-PPO agent interactions before training (a), after an
optimal policy has been identified by single agent PPO (b, c), and
after an optimal policy has been identified by multi-agent PPO (d,
e). The validity of every action taken at every step by the PPO agent
is shown above each sampled dialogue.

Createpeure
Clvdes

Query Doc 1

Reward Model

Claude v3
Reasoning-Acting
Agent (Assistant)

Fall back

Claude v3
(User)

Python
Interpreter

RAG Doc 1

C APPENDIX C.

Map of queries and tools in the custom orchestration environment
used to define the reward model for VRL in the third experiment
(section 3.3).

KDD 2024, August 25, 2024, Barcelona, Spain

D APPENDIX D.

Prompts generated using Claude v3 Sonnet in Amazon Bedrock for
all queries in the custom orchestration environment used for the
VRL experiment (section 3.3).

"query": 1,

"prompts": [

"Please generate an image depicting several dogs running on a
beach",

"I would like you to create a picture with multiple dogs playing on
the sand near the ocean",

"Can you make an image showing a few dogs running and playing
on the seashore?",

"Create a drawing of multiple canines racing across the sand close
to the water",

"Produce an illustration displaying numerous dogs sprinting near
the tide by the beach"],

"query": 2,

"prompts": [

"On the given picture, determine the number of dogs that are run-
ning on the beach",

"Please examine the provided image and count the quantity of dogs
that are dashing on the seashore",

"Can you inspect the shown illustration and enumerate how many
canines there are sprinting on the sand?",

"I need you to visually analyze the displayed graphic and tally the
amount of dogs that are jogging along the beach",

"Kindly check the presented picture and calculate the total number
of dogs that are active on the seaside"],

"query": 3,

"prompts": [

"Calculate the result of the mathematical expression: 5 plus 5 plus
10",

"Can you determine the solution when 5 is added to 5 and then 10
is added to that result?",

"I would like you to compute the total of 5 added to 5, with 10 added
to that sum”",

"Find the end quantity when 5 plus 5 is summed with 10",

"Derive the final value when 5 plus 5 plus 10 are combined together
through addition"],

"query": 4,

"prompts": [

"Calculate the result of the expression 5 plus 5 plus 10,

"With i initially 0, iterate four times over this loop: i =i + 5, and
tell me the output”,

"Let i begin at 0. Repeat this process four times: add 5 to the current
value of i. Inform me of i’s value at the end.,

"Initialize i to 0. Perform the following operation four times: i =i +
5. Communicate the resulting value of i to me.,

"With i initially assigned the value 0, cycle through this loop four
times: i += 5. Report the ultimate value of i"],

"query": 5,

"prompts": [

"What process did Anthropic use to adapt and adjust the harmful
language detection of their large language model?”,

"Please describe Anthropic’s methodology to specialize and opti-
mize the identification of toxic statements within their LLM",

KDD 2024, August 25, 2024, Barcelona, Spain

"Can you explain the technique Anthropic leveraged to refine and
enhance the labeling of problematic linguistic content by their AI
model?",

"I would like you to delineate the approach taken by Anthropic
to tune and hone the classification of offensive language by their
generative model",

"How did Anthropic fine tuned the toxicity of their LLM?"],
"query": 6,

"prompts": [

"What methods did Anthropic utilize to expand and amplify the
precision training for recognizing harmful language across their

Jeremy David Curuksu

large language model?",

"Please discuss Anthropic’s tactics to broaden and multiply the
selective optimization of toxic content detection within their LLM",
"Can you clarify the procedures used by Anthropic to scale up and
increase the specialized refinement of problematic text identifica-
tion by their Al system?",

"Describe how Anthropic was able to grow and augment the cus-
tomized enhancement of offensive speech classification across their
generative neural network",

"How did Anthropic scaled the fine tuning of the toxicity of their
LLM?"]

	Abstract
	1 Introduction
	2 Policy optimization of reasoning agents in multi-turn dialogues
	3 Methodology
	3.1 Proximal policy optimization of the clarification fallback
	3.2 PPO with Nash equilibrium
	3.3 Verbal reinforcement learning of the clarification fallback

	4 Results
	4.1 Analysis of fallback proximal policy optimization in multi-turn dialogues
	4.2 Analysis of fallback policy optimization by verbal reinforcement learning

	5 Conclusion
	Acknowledgments
	References
	A Appendix A.
	B Appendix B.
	C Appendix C.
	D Appendix D.

