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Abstract 

We present a Graph Transformer deep learning method for workforce planning 
which can identify potential talent risks and forecast individual monthly talent 
movements in each segment of the Amazon corporate population. This method 
outperforms linear methods in current usage at Amazon by 40% in 76% of the 
segments, and outperforms all state-of-the-art baselines tested by 15% in 61-70% 
of the segments. Given the dependency Graph in the proposed method can be used 
to interpret and understand talent forecasts, there is little drawback to using this 
method compared to using linear trailing rates for workforce planning. 

 
1 Introduction 

Workforce planning at Amazon sets year-end headcount targets by financial cost center to meet the 
company’s current and future staffing needs based on business goals and talent movement forecasts 
(hires, promotions, transfers, attritions). Individual team leaders further plan their workforce needs 
by individual team, job type, job level and location. Failure to accurately forecast future headcounts 
and staffing needs often result in delays in productivity and costly resource allocation [1].  

Forecasting Amazon talent movements is challenging due to complex spatial and temporal 
dependencies within the Amazon population, and non-stationarity that result from unusual events 
such as the Covid pandemic [2]. Amazon is an especially difficult forecasting problem due to its 
diverse operation workforce and unprecedented size (over 1.6M employees in peak season [2]).  

Examples of talent movement dependency at Amazon include talents in similar environments, with 
similar profiles and job market opportunities, or under similar talent management strategies. Many 
other factors, including external factors such as large swings in the company’s stock value [3], can 
influence talent flows and thereby create correlated traffic patterns in the Amazon population. 

Forecasting spatial and time-dependent data in large, complex traffic networks was recently 
addressed by estimating a dependency Graph that parsimoniously represents the spatial dependency 
between different locations in the network (nodes), and using this Graph to sparsify a deep learning 
Transformer model [4]. Transformers [5, 6] have been shown to significantly outperform RNN and 
CNN and improve the learning of long-range temporal dependency [5]. By assigning each neuron 
of the Transformer with a spatial location and using knowledge from the dependency Graph to prune 
neural connections that are not dependent, the resulting Graph Transformer could efficiently capture 
both spatial and temporal dependencies and scale to large traffic networks [4]. 

In this paper, we use a multivariate Gaussian approximation to find the dependency Graph of talent 
movements over the different teams of the Amazon corporate population defined by leader, job type, 
and job level. We use this Graph to derive insights into the overall dynamics of Amazon talent 
movements and identify potential drivers of talent risks. We then integrate the Graph in a 
Transformer model, and forecast individual talent movements for each team (node) of the Amazon 
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corporate population. We demonstrate the forecasting performance improvement compared to 
baseline methods in current usage at Amazon (linear trailing rates) and more advanced baseline 
forecasting methods. Results show that our method outperforms linear methods by 40% in 76% of 
the nodes, and all state-of-the-art baselines tested by 15% in 61-70% of the nodes. 

2 Methodology: Graph and Transformer for workforce planning  

We describe the multivariate Gaussian approximation method used to determine the dependency 
Graph among individual teams within the Amazon corporate population (section 2.1). Then we 
describe the application of Transformer models for multivariate time series forecasting (section 2.2). 
Finally, we combine the two together into an original Graph Transformer model to forecast 
individual talent movements for each team of the Amazon corporate population (section 2.3).  

2.1 Analyzing talent movements with Graph 

We use a multivariate Gaussian approximation to determine the dependency Graph of 5 talent 
movements (hires, promotions, transfers, regretted attritions, unregretted attritions) over the 72 
teams existing in the Amazon corporate population when defined by leader (VP level), job type and 
job level. A Gaussian approximation models the spatial and time-dependent data as the following 
multivariate distribution over 𝑛 nodes (5	talent movements × 72	nodes = 360 nodes = 𝑛): 
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where 𝜇 is the mean vector and Σ"% the inverse of the covariance matrix, called the precision matrix. 
In this paper, we estimate the precision matrix directly from the data by Graphical Lasso [7, 8]. The 
precision matrix characterizes the conditional dependency between different nodes. Two nodes may 
be dependent if their talent movements are correlated. But correlation does not guarantee 
dependence. A correlation may occur because the two nodes are jointly dependent on a third node 
(Fig 1). In contrast, conditional dependency measures the correlation between two nodes after 
controlling for the talent movements in other nodes (i.e., keeping them constant). We measure the 
conditional dependency between nodes 𝑖 and 𝑗 by their conditional correlation coefficient: 
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Following [4], we preset a threshold on each entry of the conditional correlation matrix and treat 
nodes 𝑖 and 𝑗 as conditionally dependent if the absolute value of 𝐶4𝑥!' , 𝑥!

(|𝑥!
"'(7 is above the preset 

threshold. The non-zero entries define the structure of the dependency Graph between nodes, which 
we then use to sparsify a Transformer model (section 2.3). 

2.2 Forecasting time-dependent talent movements with Transformer 

To forecast talent movements, we implemented a Transformer encoder-decoder architecture [5, 6] 
which has been shown to outperform state-of-the-art baselines in sequential tasks for processing 
natural languages [5] and forecasting time series [4]. Transformer relies on Attention functions to 
encode and learn the relationship between distant positions in a sequence. It does not use recurrence 
nor convolution. An attention function can be described as mapping a query and a set of key-value 
pairs to an output, where the query, keys, values, and output are all vectors [5]. The output of an 
attention function at position 𝑖 in a sequence is defined by the following scaled dot product, where 
a query vector 𝑄' attends to all other positions 𝑗 as a weighted sum over all these positions: 
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Where 𝑉 is the matrix of value vectors 𝑉( and 𝑑 the dimension of the query and key vectors. A value 
vector can have arbitrary embedding dimension, which also defines the dimension of the output. In 
multi-layer encoder-decoder architectures, this output is used as the value vector at the next layer. 

The encoder consists in self-attention layers i.e., it relates different positions of a given sequence in 
order to compute a representation of the sequence. Each query 𝑄' at position 𝑖 can attend to each 
other position 𝑗 in the sequence as much or as little as the learning task requires by weighting each 
position with a key 𝐾(. The positions themselves can provide any type of information by being 
represented as a value vector 𝑉(. As a result, an attention mechanism can learn long-range temporal 
dependencies just as easily as shorter range ones, simultaneously, in contrast to RNN and CNN.  

For 𝑛 input time series of 𝑚 steps, the encoder embeds the sequences of historical values into a 
context tensor of dimension (𝑙,𝑚) where 𝑙 is the embedding dimension. The number of input time 
series 𝑛 is not limited to the numbers of Amazon teams for which we need forecasts: it can also 
include auxiliary information. In this paper, we include a measure of S&P 500 stock prices expected 
future volatility to reflect external market conditions known to impact talent movements [3].  

The decoder consists in self-attention layers which allow each position in the decoder sequence (the 
forecasted horizon) to attend to all positions in this sequence up to and including that position, and 
also an encoder-decoder attention layer, in which the queries come from the previous decoder layer, 
and the keys and values come from the output of the encoder [5]. The final output of the decoder is 
a forecast for the next timestep based on past sequences (encoder sequence) and on all previous time 
steps in the target horizon (decoder sequence). More details can be found in [5,6] for the original 
Transformer architecture and in [4] for the one used in this paper to forecast time series data.   

The key limitation of an attention function is its reduced resolution due to averaging attention-
weighted positions; in complex sequences, different attention maps can produce an identical output 
[5]. The original Transformer architecture addressed this problem by using multi-head attention. 
Multi-head attention repeats the scaled dot product described above and average the results together, 
which allows the model to jointly attend to information from different representation subspaces at 
different positions. Instead of averaging over multiple heads, it would be even more beneficial if we 
knew how to focus the attention heads on connections that matters the most. This is precisely what 
the dependency Graph presented in section 2.1 can help with. 

2.3 Combining Graph and Transformer to forecast large spatial and time-dependent data 

We use the dependency Graph of Amazon talent movements presented in section 2.1 to sparsify the 
architecture of the Transformer presented in section 2.2. This focuses the parameterization (i.e., 
learning) of attention heads to connections for which entries in the conditional correlation matrix 
are above a preset threshold. This sparsification of the neural network enables Transformer to better 
capture the dependencies between Amazon teams (nodes) in term of talent movements.  

 

 

 
 

 

    Figure 1: Example of co-dependent nodes (left) and sparsified neuronal connections (right) 
 

 To integrate the Graph into the encoder-decoder architecture, we associate each neuron in the 
Transformer with a node in the Graph (Fig 1) or auxiliary information, then prune connections 
between neurons associated with nodes not connected in the Graph. This helps better capture 
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dependencies between talent teams because a team in this learning system is impacted only by itself 
and other clearly dependent teams. In addition, this Graph-based sparsification regularizes the 
overall Transformer architecture, which helps minimize general overfitting problems. 

3 Graph analysis of Amazon talent movements 

In this section, we present insights derived from Graph analysis using multivariate Gaussian 
approximation on the dynamics of talent movements between the 72 teams existing in the Amazon 
corporate population when defined by leader (VP level), job type and job level. In this paper, we 
make no mention of actual leader names and use symbols instead (𝑥%, 𝑥$…). We describe how our 
method can be used to address three talent questions: Which teams in the Amazon corporate 
population are related in term of talent movement (3.1), which teams are the most interdependent 
(3.2), and for a given talent movement in a given team, which other teams are most related (3.3).  

3.1 Which teams in the Amazon corporate population are related in talent movement? 

In this section and the next, we use transfers, one of the five general talent movements, as illustrative 
example. Similar conclusions could be derived from the Graph for the other four talent movements, 
and section 3.3 will describe how to derive insights into the relationship between talent movements. 
Fig 2 (left) shows the complete transfer conditional correlation matrix organized by job level.  

 

 
 

 

 

 

  

 

    Figure 2:  The Amazon corporate talent transfer dependency Graph  
 

The blue entries in the transfer matrix that parallel the main diagonal suggest that segments who are 
separated by one job level but fall under the same leader and job type are related in internal transfer. 
For example, the black box shows the correlation between level 4 and level 5 software development 
engineers (SDE) reporting to leader 𝑥%: its dark blue color means that when a level 5 SDE team 
reporting to leader 𝑥% had higher transfers, higher transfers were also observed in level 4 SDE teams 
reporting to leader 𝑥%. This correlation is not observed when the difference in job level is two or 
more, such as level 3 or 6. In practice, this type of insight could inform transfer policies by better 
anticipating the business impact of high (or low) transfer rates across specific segments of the 
Amazon population. 

3.2 Which teams are the most interdependent in the Amazon corporate population? 

Visualizing the overall talent dependency Graph can reveal “clusters” in the Amazon population 
(Fig 2, right) where talent movements are more dependent within the cluster than with movements 
in other clusters i.e., relatively independent from the rest of the organization. For example, the 
cluster #4 tagged with purple nodes in Fig 2 corresponds to talents of level 6 and level 7 for whom 
internal transfers appear more dependent on one another than on the rest of the organization.  
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 Table 1 reports the top five most- and least-dependent teams in the transfer dependency Graph. SDE 
and Tech talents with level 4-5 and reporting to leader 𝑥%-𝑥$ represent a typical cluster of employees 
i.e., transfers in this cluster are most likely to impact transfers in other teams of this cluster.  

 

  Table 1: Transfer nodes most-/least-related in Amazon corporate population 
 

  Five most related nodes     Weight Five least related nodes         Weight 

SDE, level 4, leader 𝑥!   2.40 Man, level 7, leader 𝑥" 2.24 
 Tech, level 5, leader 𝑥!   2.36 Tech, level 3, leader 𝑥" 0.84 
 SDE, level 4, leader 𝑥"   2.32 Tech, level 3, leader 𝑥! 0.73 
 Tech, level 4, leader 𝑥"   2.30 SDE, level 8, leader 𝑥# 0.62 
 Tech, level 6, leader 𝑥!   2.30 Man, level 8, leader 𝑥! 0.46 

 

In practice, identifying clusters of talent movements help develop talent strategies valid across 
multiple clusters e.g., promotions and hires targets, as well as strategies tailored to specific clusters. 

3.3 For a given talent movement in a given team, which other teams are most related? 

 Anticipating the magnitude and direction of talent movements following a talent event observed in 
a given team can also help organization leaders design and implement focused talent strategies. For 
example, Table 2 identifies the five most informative nodes related to SDE level 6 in leader 𝑥% 
organization in term of internal transfers. For leader 𝑥%, SDE level 5 talent transfers are the best 
indicator of SDE level 6 transfers (𝑟 = 0.192). Interestingly, SDE level 6 under leader 𝑥$ are also 
significant indicators but are negatively correlated (𝑟 = −0.107). The negative correlation might be 
because SDE level 6 talents tend to transfer in and out of 𝑥%and 𝑥$ organizations.  

  
Table 2: Transfer nodes most related to SDE L6 𝑥% node 

     Five most related nodes Weight 

SDE, level 5, leader 𝑥!  0.192 
HVH, level 3, leader 𝑥"  0.187 
Tech, level 5, leader 𝑥!  0.134 
Tech, level 5, leader 𝑥"               - 0.122 
SDE, level 6, leader 𝑥"               - 0.107 

 

 To further investigate this negative relationship, Fig 3 shows the number of transfers occurring in 
𝑥%and 𝑥$ organizations with the positive (green) and negative (red) correlations relative to SDE 
level 6 under leader 𝑥% (black). When a significant peak or trough in transfers happens for SDE level 
6 under leader 𝑥%, we observe that a similar peak or trough generally happens too in the two other 
teams identified, in opposite direction as suggested by the sign of the correlation coefficient.  

 

 

 

 

 

    Figure 3: Net transfer in SDE level 6 𝑥%, level 5 𝑥%, and level 6 𝑥$ nodes  
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 In practice, further investigation of the time lags of these peaks and troughs could be carried out to 
identify potential systematic precursors of specific transfers. More generally, anticipating the 
magnitude and direction of talent movements related to a talent event observed in a given team helps 
talent planners coordinate specific talent movements in the teams that they support.  

Finally, the dependency Graph was also estimated across all five talent movements for the entire 
Amazon corporate population. Fig 4 summarizes the hire-termination section of the Graph by 
aggregating across all job types for leader 𝑥%.  
 

 

  

    

 

 

 
 

    Figure 4: Hire-termination dependency Graph aggregated across job types for leader 𝑥% 
 

Fig 4 shows one of the greatest dependency across hires and terminations in the Amazon corporate 
talent population under leader 𝑥% is between level 7 hires and level 6 terminations. This correlation 
is negative. A possible interpretation of this observation is that directors (level 7) who just got hired 
have a significant impact on retention of their direct reports, most of whom are likely leaders in a 
level 6 position, by implementing a new, clear and innovative executive vision. In situations where 
these director positions remain unfilled, level 6 managers might lack clear directions coming from 
a direct, newly dedicated director. This interpretation is given just for illustration purposes. In 
practice, identifying strong dependencies as show in Fig 2-4 and Tables 1-2 represent only a starting 
point to help focus experimentation and further investigation into potential causal effects. 

4 Forecasting Amazon talent movements  

Finally, we present results from Graph Transformer to forecast individual talent movements in each 
team of the Amazon corporate population. We describe the cross validation set up and baseline 
models used for benchmarking (section 4.1), then summarize the benchmarking results (section 4.2). 

4.1 Cross-validation and benchmark set up 

The Graph Transformer performance was evaluated on the task of forecasting Amazon talent 
movement 12-month horizons for a given node by auto-regressing on the most recent 18 months 
(input sequences) across all 72 nodes, using a 1-month expanding window training and cross-
validation approach [10]. A monthly time series ranging from 01/2015 to 04/2022 was assembled 
for the number of promotions, regretted/unregretted attritions, transfers and hires for the 72 teams 
of the Amazon corporate population defined by leader, job type and job level. The concatenated 
auxiliary data was the S&P 500 stock prices expected future volatility index (VIX). This represents 
a total of 5	talent movements × 87	months × (72+ 1) = 31,755 data points. We split this data set 
into training vs. test set and tuned hyperparameter exclusively in the training set to maintain the 
integrity of the test set. Hyperparameters tuned included the length of the input sequence (up to 18 
months), the number of hidden units and attention heads, and the Graph threshold for connection 
pruning. The training set used data from 01/2015 to 04/2020 which represents over 40 pairs of input-
output sequences per talent movement per node. The test set used data from 12/2019 to 05/2022 
which represents over 17 pairs of input-output sequences per talent movement per node i.e., well 
over 6,000 output test data points across all nodes. All output sequences are defined in 2021-2022 
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so there is no overlap with output sequences used for training the models. 

To benchmark the performance of Graph Transformer at forecasting Amazon talent movements, we 
used a trailing 3-month extrapolation method as baseline because this is still currently used by many 
teams at Amazon for workforce planning. In this model, an input 12-month sequence is used to 
derive an average 3-month rate which is in turn used to forecast the next 12 months. 

We also evaluated more advanced forecasting methods based on s-ARIMA, state space and Prophet 
models. s-ARIMA (Seasonal Autoregressive Integrated Moving Average) predicts future values of 
a time series by regressing on preset lags and seasonal periods of both the series itself and of random 
fluctuations around the series moving average [11]. The lags and seasonal periods are determined 
by hyperparameter tuning. A similar state space model with additional parameters tuned to allow 
for multiplicative effects of seasonality and random fluctuations was also evaluated. Finally, Prophet 
[12] is an additive model that uses a linear piecewise function to decompose each series into trends 
and change points, adds weekly seasonality using a Fourier Transform, and also adds custom special 
events such as holidays. See [12] for more details. 

The performance of each model was measured using the average Mean Absolute Percent Error 
(MAPE) calculated over all 12-month output sequences in the test set for each talent movement and 
each of the 72 nodes, as described above. We excluded promotion forecasts in the results reported 
below because all models tested have disproportionality worst performance for promotion forecasts 
compared to other talent movements, which significantly biases MAPE averages. Promotions are 
completely under the control of leaders and managers at Amazon, which is not the case of other 
talent movements. Further development to optimally forecast promotions is needed and underway. 

4.2 Forecasting performance results 

Table 3 shows the average MAPE calculated on the test set for the Graph Transformer model and 
each of the benchmarked models described in section 4.1. To further characterize the performance 
obtained, we also report the proportion of nodes for which an improvement in MAPE is observed 
relative to each baseline, and the observed MAPE specifically in these nodes. 
 

Table 3: Performance of Graph Transformer to forecast talent movements  

     Model  MAPE  Nodes MAPE in  
    improved nodes improved 

Graph Transformer 84% N/A (self) 93% 
Prophet 95% 70%  108% 
s-ARIMA/State Space 87% 61%  107% 
Trailing 3-month 112% 76%  133% 

 

All advanced methods perform better across all metrics compared to the trailing 3-month baseline. 
This is not surprising given the latter cannot model well the non-linearity and non-stationarity within 
the data, which were very pronounced during the Covid pandemic period, and also does not consider 
the spatial dependencies between locations in the structure of its coefficient matrices.  

The biggest improvement is observed for the Graph Transformer with a MAPE of 84%, representing 
a decrease in MAPE of 3 and 11 percentage points relative to s-ARIMA/State Space and Prophet 
models, respectively. The proportion of nodes improved is 61% and 70% relative these methods, 
with a decrease in MAPE of 15% in these nodes, which confirms that Graph Transformer 
outperforms other methods for the general talent movement forecasting task and not just for a small 
number of specific nodes. Compared to the simplest trailing 3-month baseline, an improvement in 
76% of nodes is observed. This corresponds to a decrease in MAPE of 28% across all nodes, and a 
decrease in MAPE of 40% across the improved nodes.  
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Different levels of performance were observed depending on which talent movement was forecasted 
(e.g., promotion, see section 4.1). Further optimization is currently underway to identify 
hyperparameters optimal for specific types of nodes and talent movements. 

5 Conclusion 

We developed a Graph Transformer deep learning architecture for workforce planning at Amazon, 
and used it to (1) identify related talent movements across the different teams of the Amazon 
corporate population defined by leader, job type and job level, and (2) to forecast individual talent 
movements 12 months in the future for each team. 

By identifying related teams in the Amazon talent population, the Graph can be used in workforce 
planning to better anticipate the scope of observed talent events, identify potential risk factors, and 
help focus experimentation and further investigation into potential causal effects.  

Individual talent movement forecasts are needed in workforce planning for Amazon to meet current 
and future staffing needs. Our results demonstrate that the method presented in this paper 
outperforms linear methods typically used in workforce planning at Amazon (trailing rates) by 40% 
in 76% of the corporate population segments, and outperforms all state-of-the-art baselines tested 
(s-ARIMA/State Space, Prophet) by 15% in 61-70% of corporate population segments.  

Future research is needed to identify hyperparameters optimal for specific types of nodes and talent 
movements, to include explicit locations, and to extend Graph Transformer to other Amazon 
populations such as the more versatile and fast-paced field population in fulfillment centers. 

It is worth noting that even though the trailing 3-month baseline method cannot model well the non-
linearity and non-stationarity of Amazon talent data, which explains the disproportionality high 
increase in performance when using any of the advanced time series forecasting methods, it is 
actually the method in current use for most workforce planning decisions at Amazon.  

Given that the dependency Graph in our method can be used to interpret and understand talent 
movement forecasts, there is little drawback to using the method presented in this paper compared 
to using linear trailing rates for workforce planning. In the future, we will add an AI interpretability 
process [9] to the Graph Transformer model to explain each forecast, individually. We hope that the 
results presented in this paper will contribute to a wider adoption of machine learning methods for 
workforce planning at Amazon. 

Customer Problem Statement 

Amazon team leaders, talent planners and financial analysts forecast future e.g., end-of-year, talent 
movements so they can meet future staffing needs. Failure to accurately forecast future headcounts 
and staffing needs result in delays in productivity and costly resource allocation. Talent planners 
and team leaders compare talent movement forecasts with plans defined by financial analysts to 
assess the year-end talent gaps-to-goal. They also create risk scenarios to measure how changes in 
specific talent drivers impact forecasted headcounts, to identify talent movements at risk of driving 
gaps-to-goal, and to plan for recruiters needed to support hiring. The method presented in this paper 
identifies Amazon talent movements that are most related to help identify potential risk factors and 
design strategies to close gaps-to-goal. It also forecasts future talent movements in individual 
segments of the Amazon population. Forecasting talent movements is challenging at Amazon due 
to complex spatial and temporal dependencies, and due to non-stationarity which was most recently 
induced by the Covid pandemic. 
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