
1

Workforce Planning Policy Optimization
with Trajectory Transformers

 Jimmy Rigby
People Experience and Technology

 rigbjame@amazon.com

Nooshin Yousefi
Amazon Sponsor Brands

 nyousefi@amazon.com

 Peter Zhu
People Experience and Technology

 zhilongb@amazon.com

Jeremy Curuksu
Amazon Web Services

 curukj@amazon.com

Abstract

While machine learning is now increasingly used for workforce planning at
Amazon to produce talent forecasts, identifying an optimal talent strategy based
on these forecasts still relies exclusively on human expertise. We propose a
reinforcement learning method for workforce planning which can explore talent
scenarios offline and identify optimal talent strategies, with a customizable
agent’s objective defined by the user (human-in-the-loop). We gathered a dataset
covering nearly a decade of historical workforce data at Amazon and show that
the workforce policy learned by the agent systematically outperforms a
behavioral cloning baseline during planning on held-out data. Compared to the
baseline which more naively infers policy to imitate historical human planning
methods, the RL policy achieves between 2.8% to 12.3% higher rewards, with
an improvement of 8.0% on average across all model-based evaluations. This
corresponds to over $26 million in potential cost saving annually across the
Amazon world-wide talent population, as a result of headcount plans that more
closely align with headcount targets.

1 Introduction

Workforce planning (a.k.a. talent planning) at Amazon coordinates the acquisition and management of
talents to achieve the desired staffing levels over time and across employee segments. Talent planners
typically work backward from individual team leader’s headcount targets to create plans defining how
to bring employees in (promotions in, hires, transfers in) and move employees out (promotions out,
transfers out, attrition) of employee segments. High quality i.e., optimal talent plans and strategies allow
Amazon to achieve the desired staffing levels enabling the business to consistently operate while
maintaining low cost.

In this paper, we propose an original reinforcement learning (RL) method with human-in-the-loop for
workforce planning at Amazon, which can autonomously explore talent scenarios offline, identify
optimal talent strategies, and recommend specific talent levers. The exact objective of the RL agent
encoded in the reward function is customizable by the user's preferences. Thereby, the user controls the
nature of the talent strategies and talent segments explored by the agent. The proposed method also
implements some recent Transformer generative models to simulate the Amazon workforce offline,

2

which gives total control to humans, talent planners and business leaders, both upstream and
downstream of the talent policy optimization process.

1.1 Current Workforce Planning Method at Amazon and Limitations

Today, workforce planning at Amazon combines knowledge on business targets with forecasts of talent
movements, which are often done using linear extrapolation (e.g., 3-month trailing rates) or machine
learning predictive models, to manually define workforce strategies to meet these targets. By
“manually”, we mean using deductive reasoning and expert intuitions. In other words, the actual
identification of talent strategies remains entirely on the shoulders of human planners and decision
makers. Let us immediately clarify our aim in this paper is not to replace humans in this decision
process, but to assist them with recommendations derived from machine learning. In addition to a talent
planners’, financial planners, talent specialists, and business leaders, talent planners also monitor the
incremental growth (month-to-month) of financial headcount targets, adjust their forecast, and quickly
react to unexpected events by adjusting talent plans on-the-fly, and propose strategic levers. These
levers include strategies such as transferring employees to areas of the business where there is growth,
laying off portions of the workforce, or waiting for natural attrition to correct headcount overage.
Concurrent to these processes, promotion levels are being determined through merit-based processes
and business needs. All together, these processes provide a constantly evolving policy to coordinate
hiring, transfers, attrition, and promotions across Amazon employee segments.

To above planning method currently used at Amazon has at least three primary limitations. First, non-
standardized processes and evaluation criteria make measuring plan quality and improving the planning
process difficult. Planners require a solution that standardizes the contextual factors considered during
planning and the plans’ objectives. Second, the current process relies heavily on human input at each
step in the planning process, which limits the processes scalability. Planners need a planning solution
that scales across all levels of analysis. Finally, there are no in-built mechanisms to balance short-term
and long-term goals. Planners need a solution with inbuilt mechanisms that systematically balance
short-term and long-term tradeoffs. A solution that meets these requirements will enable workforce
plans’ ability to achieve desired staffing levels while controlling cost.

1.2 Workforce Planning Policy Optimization with Trajectory Transformers

Optimizing talent policies using offline reinforcement learning can help address the limitations
described above. Offline RL [1, 2] implements an agent exploring its environment and receiving
feedback from it to learn strategies (sequences of actions called “policies”) that fulfil a predefined goal,
as in online RL, but in offline RL the environment is simulated using models derived from some pre-
existing dataset. A model, in the RL terminology, is a predictive function that takes the agent state and
action as input, and output its next state (e.g., transition function in a Markov Decision Process) and/or
reward. Thereby, for workforce planning, all we need to optimize talent policies by offline RL, is to
collect past talent planning experiences. A model can then be trained using supervised learning and
queried to simulate experience beyond what was sampled in the original dataset. Using a RL algorithm,
the agent can then identify good and bad actions learned from past experiences, generalizes good actions
to new settings, and identifies compositions of behaviors that work well together [2].

 Offline RL is especially well-suited for addressing customer problem’s related to workforce planning.
First, offline RL formalizes the talent planning problem as an MDP, standardizing the business context
considered during planning, the planning objectives, and defining mechanisms that balance short- and
long-term objectives. Second, the agent can explore, in the service of the customers, a much larger
number (up to millions) of scenarios to identify promising scenarios given their objectives. This helps
planners scale their service across Amazon. The agent’s exploration poses minimal risk to Amazon
because plans are explored offline and talent planners and business leaders retain full control over both
the goal of the agent and whether to implement the recommended strategy or not. Finally, Amazon has
nearly a decade of experiences sampled by human experts (Amazon’s workforce planners) providing
one of the largest talent planning dataset in the world. This provides RL agents with a wealth of
information to learn from.

 In this paper we first describe the offline RL method used for talent policy optimization and to assess
performance. We formalize the policy optimization problem as a MDP problem, and train a trajectory
transformer [3] on the Amazon global workforce dataset as this model is currently considered a best

3

performer offline RL model [2]. The goal of the agent is to recommend cost efficient workforce plans
that achieve desired staffing levels. To evaluate its performance, we implement offline policy evaluation
(OPE) using a behavioral cloning algorithm as baseline which naively mimics the behavior of human
experts in a sample of the pre-existing dataset. Finally, we present our key results. The offline RL agent
improved upon the naïve planner’s policy in 37 of 37 sampled segments. Compared to the baseline, the
RL policy achieves between 2.82% to 12.33% higher rewards, with an improvement of 7.99% on
average across all model-based evaluations, corresponding to a $26 Million in cost saving annually
across the Amazon world-wide talent population. Nearly all savings were driven by delivering talent
plans that reduced cost associated with understaffing and overstaffing.

2 Methodology

2.1 Workforce Planning as a Markov Decision Process

 A MDP is a mathematical formalization of a dynamic system. Here, the Amazon workforce dynamics
is modeled as a MDP by defining the workforce planners’ objectives (reward function), the actions that
workforce planners can use to meet their objectives (actions), and the information that the planner has
access to, every month, to decide which action to take (state). Figure 1 provides an illustration of how
the different components of the MDP offline RL system (defined individually below) interact.

Figure 1. Workforce planning as a MDP offline RL problem. The left pane illustrates the online data
generation process where human experts interact with the real world to produce a dataset of trajectories
across time and segments. The right pane shows offline policy optimization, where this dataset is used to
train an agent that aims to improve or replicate the human expert’s policy. The quality of this agent is then
evaluated using off-policy evaluation (OPE) methods such as Model-Based Evaluation and Fitted-Q
Evaluation described below.

2.2 Action Space

 The action space defines the strategic talent levers which the agent can pull to optimize rewards and
achieve its goals. In this paper, the agent can take four actions for each segment including: opening
external job postings, promoting employees out of their level, terminating employees, and creating
transfers-in request.

2.3 Reward Function

 The reward function quantifies the goals of the agent, numerically. A fundamental need of talent
planners and business leaders at Amazon is to achieve a desired staffing level (user-defined headcount
target) while minimizing the cost of talent strategy. At a high level, this is defined by:

𝒓𝒕𝒊 	= 	−𝒇𝒊(𝒅𝒕𝒊 − 𝒔𝒕𝒊) − 𝒗𝒊(𝑨𝒕𝒊, 𝑶𝒕𝒊)

!!,# = {$!,# , &!,# , '!,# , $!+1,#}
Dataset

i ∈ {1, 2, … , N}
 t ∈ {1, 2, … , T}

Human Experts

Actiont, i

Rewardt+1, i

Statet+1, iStatet, i

Rewardt, i
Model-Based Approximation

Governing
Equations

Transformer

Environment

!!,# = {$!,# , &!,# , '!,# , $!+1,#}
Dataset

Fitted Q-Evaluation

FQE Network

Agent

Online Data Generation Offline Policy Optimization

Dataset

i ∈ {1, 2, … , N}
 t ∈ {1, 2, … , T}

4

 where 𝒇𝒊(𝒅, 𝒔) is the cost of the gap for a talent segment i, 𝒅𝒕(𝑨,𝑶) is the targeted headcount, 𝒔𝒕 is the
actual headcount, and 𝒗𝒊 is the cost of executing the recommended actions (𝑨) and resulting states (𝑶).
i indexes employee segments and t indexes time. Appendix 1 provides more details about how the cost
associated with talent gap and the cost associated with workforce plans were operationalized. This
reward specification allows us to express the value of policies in dollars.

2.4 State Space

As the agent makes decisions about each segment, it has access to information about the segment’s
attributes (i.e., job level), funnel metrics into the segment (i.e., requisitions), talent movements, supply
and demand, the number of promotion-ready employees, and finally some information on supply and
demand about other segments that could be transfer partners and promotion partners. Table 1 provides
a complete list of the state information available to the agent each month.

Table 1. Description of state information available to the agent during planning.

Grouping State Dimensions
Historical Actions Requisitions, Promotions Out, URA, Transfer-In Requests
Non-Actionable Talent
Movements

Regretted Attrition, Transfer Outs, Hiring Volumes, Promotions In

Funnel Metrics Internal Applicant Volumes, External Applicant Volumes, On-Sites,
Offers, and Pending Starts

Segment Identifiers Job Level, Tech Indicator, Leader, and Corporate Flag
Headcount Desired and actual headcount
Forward looking Slate Employees ready for promotion

2.5 Offline Simulation of Amazon Workforce using Trajectory Transformer

 We use an adapted version of the trajectory transformer method [3] to produce talent plans that
maximize future reward under the MDP introduced above. The trajectory transformer [3] is an offline
RL method that treats planning as a sequence-to-sequence modeling problem, where every dimension
of states, actions, and rewards, in the pre-existing dataset represent a step in one global sequence
(referred to as quantization of information in [3]). A Transformer model is then trained to predict the
next step in the sequence based on prior states, actions, and rewards. As in the original Transformer
architecture [4], the trajectory transformer can use sections of observed trajectories and thus scale to
arbitrarily large datasets. Figure 2 illustrates how the trajectory transformer operates.

Figure 2. The trajectory transformer uses observed trajectories to predict future states, actions, and rewards

Since the agent is planning for a large number of segments, we trained a global trajectory transformer
similar to a global timeseries models [5, 6]. The global model learns from training examples spanning
multiple employee segments. By learning across multiple segments simultaneously the global trajectory
transformer (1) allows the model to transfer knowledge about system dynamics across employee
segments and (2) reduces the agent’s training time and operation burden enabling the agent to scale
across an arbitrarily large workforce.

5

The trajectory Transformer model can be queried both to predict next states and rewards, and to plan
actions for policy optimization. Here it was used to improve upon the behavioral policy by, first,
generating future trajectories, constrained to the principles underlying the governing equations (see
below), using beam search (same as in [3]). After generating a set of candidate trajectories, planning is
done by selecting the action with the highest sum of reward and “reward to go” (see [3] for more
details). By first sampling likely actions under the behavioral policy and then selecting the highest
reward outcome, the trajectory transformer can recommend actions that do not fall too far beyond the
support of the sampled historical data [2].

2.6 Constrained System Dynamics using Governing Equations

In addition to using a global model, we constrained the trajectory transformer to follow three known
principles that underly Amazon’s talent dynamics. This constrains the trajectory transformers’
stochasticity using known physical principles. Not only do they help constrain stochasticity, but the
governing equations introduce interdependence across the employee segments. Interdependence allows
the agent to make plans in consideration of actions taken in other segments and guarantee consistency
of in- and out-flows between segments. The governing equations and their corresponding principles are
as follows:

 Principle 1: Changes in headcount are fully characterized by the movements that bring
employees into and take employees out of their segment:

𝐇𝐂𝒊,𝒕$𝟏 	= 	𝐇𝐂𝒊,𝒕 	+	𝐇𝐢𝐫𝐞𝐬𝒊,𝒕 	+ 	𝐏𝐫𝐨𝐦𝐨𝐬	𝐈𝐧𝒊,𝒕 	− 	𝐏𝐫𝐨𝐦𝐨𝐬	𝐎𝐮𝐭𝒊,𝒕 	−	𝐀𝐭𝐭𝐫𝐢𝐭𝐢𝐨𝐧𝒊,𝒕 		+		𝐍𝐞𝐭𝐓𝐫𝐚𝐧𝐬𝐟𝒊,𝒕

 Principle 2: Promotions out of one job level are equal to promotions into another job level of
the same tech indicator and leader.

𝐏𝐫𝐨𝐦𝐨𝐬	𝐈𝐧𝒍$𝟏,𝒕 = 𝐏𝐫𝐨𝐦𝐨𝐬	𝐈𝐧𝒍,𝒕		

 Principle 3: Transferring employees across segments cannot create new employees, only
redistribute employees across leaders in the same tech indicator and job level.
See Appendix 2 for implementation details.

2.7 Amazon Workforce Historical Dataset

The pre-existing dataset used for the offline RL method described above consisted in Amazon internal
talent movement data with monthly time granularity data, spanning the period from 01/2016 to 09/2023.
Employee-segments were defined using four employee dimensions, to produce employee segments
characterized by different Senior Vice Presidents, job levels (levels 3 - levels 6), technical indicators
(technical (non-SDE), non-technical, SDE), and corporate statuses (corporate or not corporate). In total,
this required the agent to simultaneously plan for 37 segments of employees with a total of 3,370
sampled trajectories and a global sequence made of 112,299 elements.

2.8 Baseline Policy

The trajectory transformer’s policy was compared to a naive behavioral cloning algorithm which
approximates the human-experts’ behavioral policy as sampled in the pre-existing dataset. In other
words, behavioral cloning does not explore and attempt to generalize through alternative state-action
space, as the offline RL attempt to do. Behavioral cloning was selected as a baseline because it allows
us to approximate the quality of the trajectory transformer’s learned policy relative to how Amazon has
typically acted. The behavioral cloning algorithm replicated the trajectory transformer architecture and
hyper parameters. The key technical difference between behavioral cloning and the trajectory
transformer is that behavioral cloning does not use any planning method.

2.9 Off Policy Evaluation

Off-policy evaluation (OPE) is the problem of estimating the value of a target policy only using data
pre-collected from some behavioral policy. Two OPE methods, model-based approximation and Fitted-
Q Evaluation (FQE), were selected because no single OPE method outperforms others in all settings
[7]. Furthermore, the two approaches offer complementary benefits and limitations.

6

2.9.1 Model-based OPE

Model-based OPE evaluates policies by learning a state transition function and predicting future states
and rewards given a target policy. Higher quality policies have higher expected cumulative rewards.
Model-based approaches can be inaccurate when model dynamics are unknown or poorly approximated
[7, 8]. Despite this, they can be useful in situations when aspects of the environment are known, such
as the governing equations, when planning is done for shorter horizons, or when state-action transitions
are practically useful. In this study, we used the constrained trajectory transformer itself to approximate
state transitions. Appendix 3 describes how this model was trained along with model performance.

After training the model, 12-month trajectories were rolled out for each segment using either the
behavioral cloning baseline using the last 12-months as initial states. This process was repeated 25
times to provide a reliable estimate of model performance. Finally, the policies’ returns were estimated
by calculating the total discounted rewards across trajectories and averaging across samples.

2.9.2 Fitted-Q Evaluation

Fitted-Q Evaluation (FQE) is deep-learning model that directly predicts Q-values for a target policy by
learning from a set of experiences sampled under a different behavioral policy [9]. FQE was utilized in
addition to model-based OPE because it outperforms other OPE methods more consistently than
alternative approaches [7, 8]. Note that its incremental performance in OPE is not universal across all
setting - ranking in the top 10% of OPE methods across 23% of experimental conditions in one
experimental study [7]. We implemented FQE as described in [9] using an autoregressive feed forward
network with the same context length as the model-based OPE and a discount factor of 0.75. Policies
were then scored using the learned Q function and the last 12-months as initial states to predict the
value of the initial state under the learned policy as described in [8].

3 Results

3.1 Reward Accumulation

The trajectory transformer described above improved upon the behavioral policy across all employee
segments and evaluation methods tested in this paper. At aggregate, the trajectory transformer produces
7.99% higher rewards according to the model-based OPE and 3.04% higher rewards according to FQE
when compared to behavioral cloning. Considering FQE as the most conservative of the estimate, the
talent policies learned and proposed by the agent would result in $26 million of cost savings per year.
Table 2 reports the marginal rewards across the two policies using model-based OPE and Fit Q
Evaluation. Policy improvements varied across segments and evaluation methods with the greatest
percent improvements being observed for SDE (Avg. Improvement: 6.99% and $33 million), Leader C
(Avg. Improvement: 7.58%, $80 Million), and Level 5 (Avg. Improvement: 6.48%, $21 Million).

Table 2. Comparison of Behavioral Cloning and the Trajectory Transformer algorithms’ cumulative

discounted rewards across employee segment and evaluation methods.

 Model-Based Evaluation Fitted-Q Evaluation

Employee Segment Behavioral
Cloning (´108)

Trajectory
Transformer (´108)

Behavioral Cloning
(´108)

Trajectory
Transformer (´108)

Tech Indicator
 Non-Tech -$7.41 -$6.86 -$3.56 -$3.45
 SDE -$2.45 -$2.18 -$2.03 -$1.97
 Tech (Non-SDE) -$2.28 -$2.13 -$2.95 -$2.86
Leaders
 Leader A -$8.53 -$7.90 -$2.76 -$2.68
 Leader B -$2.87 -$2.63 -$3.28 -$3.18
 Leader C -$0.73 -$0.64 -$2.48 -$2.41
Job Level
 L3 -$1.65 -$1.56 -$2.11 -$2.04
 L4 -$2.20 -$2.01 -$2.52 -$2.43

7

 L5 -$3.68 -$3.33 -$2.03 -$1.96
 L6 -$4.60 -$4.28 -$1.88 -$1.82

Note: The planning method with higher rewards under each evaluation method is underlined

These costs were primarily realized through reduction in cost attributable to under and overstaffing.
Reaching desired headcount was often done using relatively more expensive talent plans. For example,
the agent, on average, incurred $5 million dollars more in costs associated with the talent plan while
saving $102 million dollars in cost with the talent gap according to model-based OPE. Appendix 4
reports these results in more detail.

It is important to note that model-based evaluation is relatively more optimistic about the agent’s policy
relative to FQE, which we plan to investigate in the future. Overall, model-based evaluation suggests
the trajectory transformer improved over behavioral cloning was $71 million or 4.95% greater than the
improvement estimated by FQE. This over may be due to its explicit use of the state-transition function
learned by the trajectory transformer to evaluate the policy. This means that errors in state transitions
are present in both the planning an evaluation method. In contrast, FQE uses the concept of Q-values
which are estimated without explicitly modeling state-transitions. This allows the policy to be evaluated
using a method that does not share the same errors in model dynamics as the planning method.

3.2 Policy Comparison

To better understand the policy implications of the algorithm, we examined the actions recommended
by behavioral cloning and trajectory transformer algorithms in some key segments. Figure 3 provides
an illustration of the actions taken by the agent and the subsequent states and rewards returned by the
model across the behavioral cloning baseline and the trajectory transformers for one run and one initial
state. Relative to behavioral cloning, for this segment the trajectory transformer had on average 33.05%
higher rewards. The plan proposed by the trajectory transformer had 17.37% higher regretted attrition.
These increased vacancies were filled by promoting 18% more employees into level 5 and hiring 9%
more external employees. Both agents produced approximately the same transfer out requests
(approximately a l.8% difference).

Figure 3. Rewards (Green), States (Red) and Actions (Blue) for one initial state for the baseline
behavioral cloning algorithm and the trajectory transformer for Leader B, L5, SDE

4 Conclusion

We developed a RL method for workforce planning which can explore talent scenarios offline and
identify optimal talent strategies. Our method uses a trajectory transformer architecture to learn from a
training dataset generated by human experts, and a customizable reward function to help align the
agent’s behavior to human preferences. We gathered a dataset covering nearly a decade of historical
workforce data at Amazon and show that the workforce policy learned by the agent systematically
outperforms a behavioral cloning baseline which more naively infers policy from the historical dataset.
The RL policy achieves between 2.82% and 12.33% higher rewards, with an improvement of 7.99%

8

on average across all model-based evaluations. This corresponds to a potential improvement of over
$26 million compared to the current approach used at Amazon - a substantial cost savings.

Future research will address some of the limitations of the proposed offline RL approach: the
simplifications inherent to using an MDP, which restricts the scope of the action space and state
representation, can be addressed by increasing the fidelity of the state and expanding the controllable
actions (e.g. compensation changes, recruiter activities). In particular, we are researching Graph
methods to plan more globally i.e., take into account more global ripple effects at decision time, by
defining latent states as Graphs characterizing the global Amazon population and market conditions.
These could better capture real-world complexities and identify novel strategies.

Another limitation and future research direction is the current definition of the reward function. In the
current paper, we used deterministic reward components to align the agent with the most fundamental
needs of workforce planning: minimize talent gaps and minimize costs. This, of course, doesn’t capture
more subtle human preferences and evolving strategic priorities of business leaders and talent planners
across Amazon. To increase alignment of our agent to our customer preferences, we will follow two
avenues of research in parallel. We will continue to identify and incorporate more detailed proxy
measures in the reward function, and we will collect a dataset of human feedback (pairwise preferences
between talent scenarios) on the current agent’s behavior as in [10] to learn a reward model that can
generalize and predict more subtle human preferences.

Given the objective of the agent in our method is defined by the user, and the exact nature of its reward
function can be extended with arbitrary human preferences using Reinforcement Learning with Human
Feedback (RLHF) [10], we hope the results presented in this paper will contribute to a wider adoption
of RL methods for workforce planning policy optimization at Amazon.

5 Customer Problem Statement

Amazon team leaders, talent planners, and financial analysts, produce talent plans every year based on
forecasts of talent movements so they can meet future staffing needs, but also regularly adjust these
plans on the go based on internal and external talent and financial indicators. While machine learning
is now increasingly used to produce forecasts, there does not exist any machine learning
recommendation system at Amazon to explore, identify, or recommend talent plans. A talent planning
problem is by definition a policy optimization problem, which can be addressed using RL. In particular,
offline RL has few drawbacks compared to currently used methods at Amazon because stakeholders
retain full control over both the goal of the agent, and whether to implement the recommended strategy
or not. The agent has the potential to identify complex data-driven talent strategies under a variety of
possible internal and external talent scenarios, but the entire optimization process happens offline, using
generative models to simulate the Amazon workforce. In a RL framework, the goal of the agent is
identical to the goal of a human talent planner i.e., to identify strategies to reduce talent gaps and
minimize costs, and possibly to reach other user-specific goals. The key difference is that instead of
customers having to explore scenarios and identify optimal talent strategies on their own, the agent can
explore, in the service of these same customers, a much larger number (up to millions) of scenarios to
identify optimal talent strategies. The agent then recommends which levers to pull and when to pull
them, to minimize talent gaps and costs. Using the popular method of RL from Human Feedback, the
exact nature of the agent’s reward function could even be extended with arbitrary customer preferences,
all the RL agent needs is some customer feedback on its behavior. The pioneering work in [10] showed
RLHF can be scaled to practical and complex real-world applications beyond just language models,
which we see as a formidable and untapped potential for the talent planning problem. The amount of
feedback required to fine tune the agent’s behavior may take time to collect. As a first step, the current
paper aligns the agent using deterministic reward components corresponding to known fundamental
needs in workforce planning: minimize talent gaps and minimize costs.

9

References
[1] Levine, S., Kumar, A., Tucker, G., & Fu, J. (2020). Offline reinforcement learning: Tutorial, review, and
perspectives on open problems. arXiv preprint arXiv:2005.01643.
[2] Prudencio, R. F., Maximo, M. R., & Colombini, E. L. (2023). A survey on offline reinforcement learning:
Taxonomy, review, and open problems. IEEE Transactions on Neural Networks and Learning Systems.
[3] Janner, M., Li Q., & Levine, S. (2021) Offline Reinforcement Learning as One Big Sequence Modeling
Problem. Advances in Neural Information Processing Systems. 34, 1273-1286.
[4] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I.
(2017) Attention is all you need. Advances in Neural Information Processing Systems. 30
[5] Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T. (2020). DeepAR: Probabilistic forecasting with
autoregressive recurrent networks. International Journal of Forecasting, 36(3), 1181-1191.
[6] Januschowski, T., Gasthaus, J., Wang, Y., Salinas, D., Flunkert, V., Bohlke-Schneider, M., & Callot, L.
(2020). Criteria for classifying forecasting methods. International Journal of Forecasting, 36(1), 167-177.
[7] Voloshin, C., Le, H. M., Jiang, N., & Yue, Y. (2019). Empirical study of off-policy policy evaluation for
reinforcement learning. arXiv preprint arXiv:1911.06854.
[8] Paine, T. L., et al. (2020). Hyperparameter selection for offline reinforcement learning. arXiv preprint
arXiv:2007.09055.
[9] Le, H., Voloshin, C., & Yue, Y. (2019). Batch policy learning under constraints. In International Conference
on Machine Learning. 3703-3712.
[10] Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., & Amodei, D. (2017). Deep reinforcement
learning from human preferences. Advances in neural information processing systems, 30.

10

Appendix 1: Detailed Reward Information

We set the relative cost of the talent gap based on customer anecdote. Business partners report that
they incur more cost when they are understaffed than overstaffed. This is because talent deficits make
it difficult to produce planned deliverables and reduce future trust. Talent surpluses still incur cost by
reducing the ROI realized from compensation expenditure. We differentially account for the cost of
surplus and deficits by defining 𝒄𝒅 as a function of the direction of the gap.

𝒇(𝒙) = 	 0 . 𝟓 × 𝒙𝒕𝒊 ×𝒎𝒊, 𝒊𝒇	𝒙 ≤ 𝟎
	. 𝟔 × 𝒙𝒕𝒊 ×𝒎𝒊, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 Where 𝒎𝒊 is the employee segment’s total compensation. For example, if a segment were to have
$100,000 total compensation and were to have a 10-employee talent surplus, the agent would incur a
$500,000 penalty. If the segment were to have a 10-employee deficit the agent would incur a
$600,000 penalty. For the sake of this paper, we assume that the cost associated with a talent plan is a
linear function of the actions and states taken in the recommended talent plan.

𝒗𝒊(𝑨𝒕, 𝑶𝒕) = 	𝑪𝑨!
𝑻??????⃗ 	𝑨𝒕&?????⃗ 	+	𝑪𝑶!

𝑻??????⃗ 	𝑶𝒕&?????⃗ 	

Where 𝑪𝑨????⃗ is a vector of weights that describe the relative cost of each action and 𝑪𝑶?????⃗ describes the
relative cost of non-actionable talent movements (i.e., regretted attrition) that occur as state
transitions.

𝑪𝑨!??????⃗ = 	 [𝑪𝑷, 𝑪𝑼𝑹𝑨]; 		𝑨&????⃗ = 	 [𝑷, 𝑼𝑹𝑨]	
	𝑪𝑶!??????⃗ = 	 [𝑪𝑯, 𝑪𝑻𝑰, 𝑪𝑹𝑨, 𝑪𝑻𝑶]; 		𝑶&????⃗ = 	 [𝑯, 𝑻𝑰, 𝑹𝑨, 𝑻𝑶]

The cost of talent strategies explored by the agent are defined by the relative cost of the talent
movements. Relative costs were derived based on the financial and time expenditures necessary to
complete an action and are reported in Table 2. For example, transfer in’s require a relatively smaller
pre-employment screening process and tend to require a lower training period when compared to
external hires.

Table 1.1. Costs of actions and resulting talent movements per HC as percentage of average total compensation.
Numbers are estimated and a more precise value will be aligned with business input

Promo (CP) URA (CURA) Hires (CH) Transf-in (CTI) RA (CRA) Transf-out (CTO)
15%* m 20%* m 15%* m 8%* m 10%* m 5%* m

11

Appendix 2: Transfer Governing Equations

In addition to the aforementioned principles, we constrained the maximum number of transfers out
per month from a segment as 20% of the segment’s total headcount. Our approach to estimating
transfers at the transaction level uses transfers-in conditional probabilities derived from historical
transfers data. The conditional probability P(A|B) represents the likelihood that an employee
transferred to team B originated from team A. We use this conditional probability as the basis for
attributing total transfers into all other teams. Since we have a constraint on total transfers out from a
team, the allocation may only be feasible for some segments. In such cases, we (1) identify teams that
violated the constraint, (2) set their transfers out to the maximum transfers out, (3) exclude these
teams and update transfers-in for remaining teams that did not violate the constraint, and finally,
renormalize the conditional probability after excluding teams that violated the constraint. This process
is repeated until no more teams violate the maximum transfer out constraints. Algorithm 1 illustrates
the pseudocode for the constrained transfer allocation.
 Algorithm 1: Pseudo code for iterative method to transfer allocation under constraint

12

Appendix 3: Agent Training

The trajectory transformer was trained to predict next state, action, and reward transitions.
Hyperparameters were selected by conducting a Bayesian search of the parameter space implemented using
Amazon SageMaker HPO. Parameters tuned include layers, heads, embeddings, and context. A manual
search of batch sizes, learning rates, and numbers of bins for the discretization. We found that a batch size
of 512, Adam optimizer with a learning rate of 1e-3, and 200 bins for the discretization were the most
effective parameters.

In this paper, we use the Mean Absolute Percentage Error (MAPE) as a metric for evaluating the accuracy
of our forecasting model. MAPE is a reliable indicator by quantifying the average absolute percentage
deviation between predicted and actual values. Using the proposed trajectory transformer, governed by
specific equations, the overall MAPE for all the state dimension for all the segments is 118.98%, overall
MAPE for all actions dimension for all the segments is 256.69%, and for reward is 72.51%.

13

Appendix 4: Breakdown of Rewards

Table 4.1. Comparison of Behavioral Cloning and the Trajectory Transformer algorithms’ cumulative discounted
rewards across employee segments using model-based estimation.

 Talent Gap Cost Talent Plan Cost

Employee Segment Behavior
Cloning (´108)

Trajectory
Transformer (´108)

Behavior Cloning
(´108)

Trajectory
Transformer (´108)

Tech Indicator
 Non-Tech $6.95 $6.37 $0.45 $0.50
 SDE $2.37 $2.11 $0.070 $0.074
 Tech (Non-SDE) $2.24 $2.08 $0.035 $0.039
Leaders
 A $8.08 $7.41 $0.45 $0.50
 B $2.78 $2.53 $0.083 $0.088
 C $0.70 $0.62 $0.023 $0.024
Job Level
 L3 $1.49 $1.39 $0.16 $0.17
 L4 $2.04 $1.84 $0.16 $0.17
 L5 $3.56 $3.18 $0.13 $0.14
 L6 $4.49 $4.15 $0.11 $0.13

