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Abstract 

While machine learning is now increasingly used for workforce planning at 
Amazon to produce talent forecasts, identifying an optimal talent strategy based 
on these forecasts still relies exclusively on human expertise. We propose a 
reinforcement learning method for workforce planning which can explore talent 
scenarios offline and identify optimal talent strategies, with a customizable 
agent’s objective defined by the user (human-in-the-loop). We gathered a dataset 
covering nearly a decade of historical workforce data at Amazon and show that 
the workforce policy learned by the agent systematically outperforms a 
behavioral cloning baseline during planning on held-out data. Compared to the 
baseline which more naively infers policy to imitate historical human planning 
methods, the RL policy achieves between 2.8% to 12.3% higher rewards, with 
an improvement of 8.0% on average across all model-based evaluations. This 
corresponds to over $26 million in potential cost saving annually across the 
Amazon world-wide talent population, as a result of headcount plans that more 
closely align with headcount targets. 

 
 

1 Introduction 

Workforce planning (a.k.a. talent planning) at Amazon coordinates the acquisition and management of 
talents to achieve the desired staffing levels over time and across employee segments. Talent planners 
typically work backward from individual team leader’s headcount targets to create plans defining how 
to bring employees in (promotions in, hires, transfers in) and move employees out (promotions out, 
transfers out, attrition) of employee segments. High quality i.e., optimal talent plans and strategies allow 
Amazon to achieve the desired staffing levels enabling the business to consistently operate while 
maintaining low cost.  

In this paper, we propose an original reinforcement learning (RL) method with human-in-the-loop for 
workforce planning at Amazon, which can autonomously explore talent scenarios offline, identify 
optimal talent strategies, and recommend specific talent levers. The exact objective of the RL agent 
encoded in the reward function is customizable by the user's preferences. Thereby, the user controls the 
nature of the talent strategies and talent segments explored by the agent. The proposed method also 
implements some recent Transformer generative models to simulate the Amazon workforce offline, 



2 
                  

which gives total control to humans, talent planners and business leaders, both upstream and 
downstream of the talent policy optimization process.  

1.1 Current Workforce Planning Method at Amazon and Limitations 

Today, workforce planning at Amazon combines knowledge on business targets with forecasts of talent 
movements, which are often done using linear extrapolation (e.g., 3-month trailing rates) or machine 
learning predictive models, to manually define workforce strategies to meet these targets. By 
“manually”, we mean using deductive reasoning and expert intuitions. In other words, the actual 
identification of talent strategies remains entirely on the shoulders of human planners and decision 
makers. Let us immediately clarify our aim in this paper is not to replace humans in this decision 
process, but to assist them with recommendations derived from machine learning. In addition to a talent 
planners’, financial planners, talent specialists, and business leaders, talent planners also monitor the 
incremental growth (month-to-month) of financial headcount targets, adjust their forecast, and quickly 
react to unexpected events by adjusting talent plans on-the-fly, and propose strategic levers. These 
levers include strategies such as transferring employees to areas of the business where there is growth, 
laying off portions of the workforce, or waiting for natural attrition to correct headcount overage. 
Concurrent to these processes, promotion levels are being determined through merit-based processes 
and business needs. All together, these processes provide a constantly evolving policy to coordinate 
hiring, transfers, attrition, and promotions across Amazon employee segments.  

To above planning method currently used at Amazon has at least three primary limitations. First, non-
standardized processes and evaluation criteria make measuring plan quality and improving the planning 
process difficult. Planners require a solution that standardizes the contextual factors considered during 
planning and the plans’ objectives. Second, the current process relies heavily on human input at each 
step in the planning process, which limits the processes scalability. Planners need a planning solution 
that scales across all levels of analysis. Finally, there are no in-built mechanisms to balance short-term 
and long-term goals. Planners need a solution with inbuilt mechanisms that systematically balance 
short-term and long-term tradeoffs. A solution that meets these requirements will enable workforce 
plans’ ability to achieve desired staffing levels while controlling cost. 

1.2 Workforce Planning Policy Optimization with Trajectory Transformers 

Optimizing talent policies using offline reinforcement learning can help address the limitations 
described above. Offline RL [1, 2] implements an agent exploring its environment and receiving 
feedback from it to learn strategies (sequences of actions called “policies”) that fulfil a predefined goal, 
as in online RL, but in offline RL the environment is simulated using models derived from some pre-
existing dataset. A model, in the RL terminology, is a predictive function that takes the agent state and 
action as input, and output its next state (e.g., transition function in a Markov Decision Process) and/or 
reward. Thereby, for workforce planning, all we need to optimize talent policies by offline RL, is to 
collect past talent planning experiences. A model can then be trained using supervised learning and 
queried to simulate experience beyond what was sampled in the original dataset. Using a RL algorithm, 
the agent can then identify good and bad actions learned from past experiences, generalizes good actions 
to new settings, and identifies compositions of behaviors that work well together [2].  

 Offline RL is especially well-suited for addressing customer problem’s related to workforce planning. 
First, offline RL formalizes the talent planning problem as an MDP, standardizing the business context 
considered during planning, the planning objectives, and defining mechanisms that balance short- and 
long-term objectives.  Second, the agent can explore, in the service of the customers, a much larger 
number (up to millions) of scenarios to identify promising scenarios given their objectives. This helps 
planners scale their service across Amazon. The agent’s exploration poses minimal risk to Amazon 
because plans are explored offline and talent planners and business leaders retain full control over both 
the goal of the agent and whether to implement the recommended strategy or not. Finally, Amazon has 
nearly a decade of experiences sampled by human experts (Amazon’s workforce planners) providing 
one of the largest talent planning dataset in the world. This provides RL agents with a wealth of 
information to learn from.  

 In this paper we first describe the offline RL method used for talent policy optimization and to assess 
performance. We formalize the policy optimization problem as a MDP problem, and train a trajectory 
transformer [3] on the Amazon global workforce dataset as this model is currently considered a best 



3 
                  

performer offline RL model [2]. The goal of the agent is to recommend cost efficient workforce plans 
that achieve desired staffing levels. To evaluate its performance, we implement offline policy evaluation 
(OPE) using a behavioral cloning algorithm as baseline which naively mimics the behavior of human 
experts in a sample of the pre-existing dataset. Finally, we present our key results. The offline RL agent 
improved upon the naïve planner’s policy in 37 of 37 sampled segments. Compared to the baseline, the 
RL policy achieves between 2.82% to 12.33% higher rewards, with an improvement of 7.99% on 
average across all model-based evaluations, corresponding to a $26 Million in cost saving annually 
across the Amazon world-wide talent population. Nearly all savings were driven by delivering talent 
plans that reduced cost associated with understaffing and overstaffing.   

2 Methodology 

2.1 Workforce Planning as a Markov Decision Process 

 A MDP is a mathematical formalization of a dynamic system. Here, the Amazon workforce dynamics 
is modeled as a MDP by defining the workforce planners’ objectives (reward function), the actions that 
workforce planners can use to meet their objectives (actions), and the information that the planner has 
access to, every month, to decide which action to take (state). Figure 1 provides an illustration of how 
the different components of the MDP offline RL system (defined individually below) interact.  

 

 
Figure 1. Workforce planning as a MDP offline RL problem. The left pane illustrates the online data 
generation process where human experts interact with the real world to produce a dataset of trajectories 
across time and segments. The right pane shows offline policy optimization, where this dataset is used to 
train an agent that aims to improve or replicate the human expert’s policy. The quality of this agent is then 
evaluated using off-policy evaluation (OPE) methods such as Model-Based Evaluation and Fitted-Q 
Evaluation described below.  

 

2.2 Action Space 

 The action space defines the strategic talent levers which the agent can pull to optimize rewards and 
achieve its goals. In this paper, the agent can take four actions for each segment including: opening 
external job postings, promoting employees out of their level, terminating employees, and creating 
transfers-in request.  

2.3 Reward Function 

 The reward function quantifies the goals of the agent, numerically. A fundamental need of talent 
planners and business leaders at Amazon is to achieve a desired staffing level (user-defined headcount 
target) while minimizing the cost of talent strategy. At a high level, this is defined by:  

𝒓𝒕𝒊 	= 	−𝒇𝒊(𝒅𝒕𝒊 − 𝒔𝒕𝒊) − 𝒗𝒊(𝑨𝒕𝒊, 𝑶𝒕𝒊) 
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 where 𝒇𝒊(𝒅, 𝒔) is the cost of the gap for a talent segment i, 𝒅𝒕(𝑨,𝑶) is the targeted headcount, 𝒔𝒕 is the 
actual headcount, and 𝒗𝒊 is the cost of executing the recommended actions (𝑨) and resulting states (𝑶). 
i indexes employee segments and t indexes time. Appendix 1 provides more details about how the cost 
associated with talent gap and the cost associated with workforce plans were operationalized. This 
reward specification allows us to express the value of policies in dollars.  

2.4 State Space 

As the agent makes decisions about each segment, it has access to information about the segment’s 
attributes (i.e., job level), funnel metrics into the segment (i.e., requisitions), talent movements, supply 
and demand, the number of promotion-ready employees, and finally some information on supply and 
demand about other segments that could be transfer partners and promotion partners. Table 1 provides 
a complete list of the state information available to the agent each month.  

Table 1. Description of state information available to the agent during planning. 

Grouping State Dimensions 
Historical Actions Requisitions, Promotions Out, URA, Transfer-In Requests 
Non-Actionable Talent 
Movements 

Regretted Attrition, Transfer Outs, Hiring Volumes, Promotions In 

Funnel Metrics Internal Applicant Volumes, External Applicant Volumes, On-Sites, 
Offers, and Pending Starts 

Segment Identifiers Job Level, Tech Indicator, Leader, and Corporate Flag 
Headcount Desired and actual headcount 
Forward looking Slate Employees ready for promotion 

 
2.5 Offline Simulation of Amazon Workforce using Trajectory Transformer 

 We use an adapted version of the trajectory transformer method [3] to produce talent plans that 
maximize future reward under the MDP introduced above. The trajectory transformer [3] is an offline 
RL method that treats planning as a sequence-to-sequence modeling problem, where every dimension 
of states, actions, and rewards, in the pre-existing dataset represent a step in one global sequence 
(referred to as quantization of information in [3]). A Transformer model is then trained to predict the 
next step in the sequence based on prior states, actions, and rewards. As in the original Transformer 
architecture [4], the trajectory transformer can use sections of observed trajectories and thus scale to 
arbitrarily large datasets. Figure 2 illustrates how the trajectory transformer operates.   

 

 
Figure 2. The trajectory transformer uses observed trajectories to predict future states, actions, and rewards 

 
Since the agent is planning for a large number of segments, we trained a global trajectory transformer 
similar to a global timeseries models [5, 6]. The global model learns from training examples spanning 
multiple employee segments. By learning across multiple segments simultaneously the global trajectory 
transformer (1) allows the model to transfer knowledge about system dynamics across employee 
segments and (2) reduces the agent’s training time and operation burden enabling the agent to scale 
across an arbitrarily large workforce.  
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The trajectory Transformer model can be queried both to predict next states and rewards, and to plan 
actions for policy optimization. Here it was used to improve upon the behavioral policy by, first, 
generating future trajectories, constrained to the principles underlying the governing equations (see 
below), using beam search (same as in [3]). After generating a set of candidate trajectories, planning is 
done by selecting the action with the highest sum of reward and “reward to go” (see [3] for more 
details). By first sampling likely actions under the behavioral policy and then selecting the highest 
reward outcome, the trajectory transformer can recommend actions that do not fall too far beyond the 
support of the sampled historical data [2]. 

2.6 Constrained System Dynamics using Governing Equations 

In addition to using a global model, we constrained the trajectory transformer to follow three known 
principles that underly Amazon’s talent dynamics. This constrains the trajectory transformers’ 
stochasticity using known physical principles. Not only do they help constrain stochasticity, but the 
governing equations introduce interdependence across the employee segments. Interdependence allows 
the agent to make plans in consideration of actions taken in other segments and guarantee consistency 
of in- and out-flows between segments. The governing equations and their corresponding principles are 
as follows:  

 Principle 1: Changes in headcount are fully characterized by the movements that bring 
employees into and take employees out of their segment:  

𝐇𝐂𝒊,𝒕$𝟏 	= 	𝐇𝐂𝒊,𝒕 	+	𝐇𝐢𝐫𝐞𝐬𝒊,𝒕 	+ 	𝐏𝐫𝐨𝐦𝐨𝐬	𝐈𝐧𝒊,𝒕 	− 	𝐏𝐫𝐨𝐦𝐨𝐬	𝐎𝐮𝐭𝒊,𝒕 	−	𝐀𝐭𝐭𝐫𝐢𝐭𝐢𝐨𝐧𝒊,𝒕 		+		𝐍𝐞𝐭𝐓𝐫𝐚𝐧𝐬𝐟𝒊,𝒕 

 Principle 2: Promotions out of one job level are equal to promotions into another job level of 
the same tech indicator and leader.  

𝐏𝐫𝐨𝐦𝐨𝐬	𝐈𝐧𝒍$𝟏,𝒕 = 𝐏𝐫𝐨𝐦𝐨𝐬	𝐈𝐧𝒍,𝒕		

 Principle 3: Transferring employees across segments cannot create new employees, only 
redistribute employees across leaders in the same tech indicator and job level.                          
See Appendix 2 for implementation details. 

2.7 Amazon Workforce Historical Dataset 

The pre-existing dataset used for the offline RL method described above consisted in Amazon internal 
talent movement data with monthly time granularity data, spanning the period from 01/2016 to 09/2023. 
Employee-segments were defined using four employee dimensions, to produce employee segments 
characterized by different Senior Vice Presidents, job levels (levels 3 - levels 6), technical indicators 
(technical (non-SDE), non-technical, SDE), and corporate statuses (corporate or not corporate). In total, 
this required the agent to simultaneously plan for 37 segments of employees with a total of 3,370 
sampled trajectories and a global sequence made of 112,299 elements.  

2.8 Baseline Policy 

The trajectory transformer’s policy was compared to a naive behavioral cloning algorithm which 
approximates the human-experts’ behavioral policy as sampled in the pre-existing dataset. In other 
words, behavioral cloning does not explore and attempt to generalize through alternative state-action 
space, as the offline RL attempt to do. Behavioral cloning was selected as a baseline because it allows 
us to approximate the quality of the trajectory transformer’s learned policy relative to how Amazon has 
typically acted. The behavioral cloning algorithm replicated the trajectory transformer architecture and 
hyper parameters. The key technical difference between behavioral cloning and the trajectory 
transformer is that behavioral cloning does not use any planning method.  

2.9 Off Policy Evaluation 

Off-policy evaluation (OPE) is the problem of estimating the value of a target policy only using data 
pre-collected from some behavioral policy. Two OPE methods, model-based approximation and Fitted-
Q Evaluation (FQE), were selected because no single OPE method outperforms others in all settings 
[7]. Furthermore, the two approaches offer complementary benefits and limitations.  
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2.9.1 Model-based OPE 

Model-based OPE evaluates policies by learning a state transition function and predicting future states 
and rewards given a target policy. Higher quality policies have higher expected cumulative rewards. 
Model-based approaches can be inaccurate when model dynamics are unknown or poorly approximated 
[7, 8]. Despite this, they can be useful in situations when aspects of the environment are known, such 
as the governing equations, when planning is done for shorter horizons, or when state-action transitions 
are practically useful. In this study, we used the constrained trajectory transformer itself to approximate 
state transitions. Appendix 3 describes how this model was trained along with model performance.  

After training the model, 12-month trajectories were rolled out for each segment using either the 
behavioral cloning baseline using the last 12-months as initial states. This process was repeated 25 
times to provide a reliable estimate of model performance. Finally, the policies’ returns were estimated 
by calculating the total discounted rewards across trajectories and averaging across samples.    

2.9.2 Fitted-Q Evaluation 

Fitted-Q Evaluation (FQE) is deep-learning model that directly predicts Q-values for a target policy by 
learning from a set of experiences sampled under a different behavioral policy [9]. FQE was utilized in 
addition to model-based OPE because it outperforms other OPE methods more consistently than 
alternative approaches [7, 8]. Note that its incremental performance in OPE is not universal across all 
setting - ranking in the top 10% of OPE methods across 23% of experimental conditions in one 
experimental study [7]. We implemented FQE as described in [9] using an autoregressive feed forward 
network with the same context length as the model-based OPE and a discount factor of 0.75. Policies 
were then scored using the learned Q function and the last 12-months as initial states to predict the 
value of the initial state under the learned policy as described in [8].   

3 Results 

3.1 Reward Accumulation 

The trajectory transformer described above improved upon the behavioral policy across all employee 
segments and evaluation methods tested in this paper. At aggregate, the trajectory transformer produces 
7.99% higher rewards according to the model-based OPE and 3.04% higher rewards according to FQE 
when compared to behavioral cloning. Considering FQE as the most conservative of the estimate, the 
talent policies learned and proposed by the agent would result in $26 million of cost savings per year. 
Table 2 reports the marginal rewards across the two policies using model-based OPE and Fit Q 
Evaluation. Policy improvements varied across segments and evaluation methods with the greatest 
percent improvements being observed for SDE (Avg. Improvement: 6.99% and $33 million), Leader C 
(Avg. Improvement: 7.58%, $80 Million), and Level 5 (Avg. Improvement: 6.48%, $21 Million).  

 
Table 2. Comparison of Behavioral Cloning and the Trajectory Transformer algorithms’ cumulative 

discounted rewards across employee segment and evaluation methods.  

 Model-Based Evaluation Fitted-Q Evaluation 

Employee Segment Behavioral 
Cloning (´108) 

Trajectory 
Transformer (´108) 

Behavioral Cloning 
(´108) 

Trajectory 
Transformer (´108) 

Tech Indicator 
   Non-Tech -$7.41 -$6.86 -$3.56 -$3.45 
   SDE -$2.45 -$2.18 -$2.03 -$1.97 
   Tech (Non-SDE)  -$2.28 -$2.13 -$2.95 -$2.86 
Leaders 
   Leader A -$8.53 -$7.90 -$2.76 -$2.68 
   Leader B -$2.87 -$2.63 -$3.28 -$3.18 
   Leader C -$0.73 -$0.64 -$2.48 -$2.41 
Job Level 
   L3 -$1.65 -$1.56 -$2.11 -$2.04 
   L4 -$2.20 -$2.01 -$2.52 -$2.43 
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   L5 -$3.68 -$3.33 -$2.03 -$1.96 
   L6 -$4.60 -$4.28 -$1.88 -$1.82 

Note: The planning method with higher rewards under each evaluation method is underlined 

 

These costs were primarily realized through reduction in cost attributable to under and overstaffing. 
Reaching desired headcount was often done using relatively more expensive talent plans. For example, 
the agent, on average, incurred $5 million dollars more in costs associated with the talent plan while 
saving $102 million dollars in cost with the talent gap according to model-based OPE. Appendix 4 
reports these results in more detail.  

It is important to note that model-based evaluation is relatively more optimistic about the agent’s policy 
relative to FQE, which we plan to investigate in the future. Overall, model-based evaluation suggests 
the trajectory transformer improved over behavioral cloning was $71 million or 4.95% greater than the 
improvement estimated by FQE. This over may be due to its explicit use of the state-transition function 
learned by the trajectory transformer to evaluate the policy. This means that errors in state transitions 
are present in both the planning an evaluation method. In contrast, FQE uses the concept of Q-values 
which are estimated without explicitly modeling state-transitions. This allows the policy to be evaluated 
using a method that does not share the same errors in model dynamics as the planning method.  

3.2 Policy Comparison 

To better understand the policy implications of the algorithm, we examined the actions recommended 
by behavioral cloning and trajectory transformer algorithms in some key segments. Figure 3 provides 
an illustration of the actions taken by the agent and the subsequent states and rewards returned by the 
model across the behavioral cloning baseline and the trajectory transformers for one run and one initial 
state. Relative to behavioral cloning, for this segment the trajectory transformer had on average 33.05% 
higher rewards. The plan proposed by the trajectory transformer had 17.37% higher regretted attrition. 
These increased vacancies were filled by promoting 18% more employees into level 5 and hiring 9% 
more external employees. Both agents produced approximately the same transfer out requests 
(approximately a l.8% difference).  

 

  

  
Figure 3.  Rewards (Green), States (Red) and Actions (Blue) for one initial state for the baseline 
behavioral cloning algorithm and the trajectory transformer for Leader B, L5, SDE 

4 Conclusion 

We developed a RL method for workforce planning which can explore talent scenarios offline and 
identify optimal talent strategies. Our method uses a trajectory transformer architecture to learn from a 
training dataset generated by human experts, and a customizable reward function to help align the 
agent’s behavior to human preferences. We gathered a dataset covering nearly a decade of historical 
workforce data at Amazon and show that the workforce policy learned by the agent systematically 
outperforms a behavioral cloning baseline which more naively infers policy from the historical dataset. 
The RL policy achieves between 2.82% and 12.33% higher rewards, with an improvement of 7.99% 
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on average across all model-based evaluations. This corresponds to a potential improvement of over 
$26 million compared to the current approach used at Amazon - a substantial cost savings.  

Future research will address some of the limitations of the proposed offline RL approach: the  
simplifications inherent to using an MDP, which restricts the scope of the action space and state 
representation, can be addressed by increasing the fidelity of the state and expanding the controllable 
actions (e.g. compensation changes, recruiter activities). In particular, we are researching Graph 
methods to plan more globally i.e., take into account more global ripple effects at decision time, by 
defining latent states as Graphs characterizing the global Amazon population and market conditions. 
These could better capture real-world complexities and identify novel strategies.  

Another limitation and future research direction is the current definition of the reward function. In the 
current paper, we used deterministic reward components to align the agent with the most fundamental 
needs of workforce planning: minimize talent gaps and minimize costs. This, of course, doesn’t capture 
more subtle human preferences and evolving strategic priorities of business leaders and talent planners 
across Amazon. To increase alignment of our agent to our customer preferences, we will follow two 
avenues of research in parallel. We will continue to identify and incorporate more detailed proxy 
measures in the reward function, and we will collect a dataset of human feedback (pairwise preferences 
between talent scenarios) on the current agent’s behavior as in [10] to learn a reward model that can 
generalize and predict more subtle human preferences.  

Given the objective of the agent in our method is defined by the user, and the exact nature of its reward 
function can be extended with arbitrary human preferences using Reinforcement Learning with Human 
Feedback (RLHF) [10], we hope the results presented in this paper will contribute to a wider adoption 
of RL methods for workforce planning policy optimization at Amazon. 

5 Customer Problem Statement 

Amazon team leaders, talent planners, and financial analysts, produce talent plans every year based on 
forecasts of talent movements so they can meet future staffing needs, but also regularly adjust these 
plans on the go based on internal and external talent and financial indicators. While machine learning 
is now increasingly used to produce forecasts, there does not exist any machine learning 
recommendation system at Amazon to explore, identify, or recommend talent plans. A talent planning 
problem is by definition a policy optimization problem, which can be addressed using RL. In particular, 
offline RL has few drawbacks compared to currently used methods at Amazon because stakeholders 
retain full control over both the goal of the agent, and whether to implement the recommended strategy 
or not. The agent has the potential to identify complex data-driven talent strategies under a variety of 
possible internal and external talent scenarios, but the entire optimization process happens offline, using 
generative models to simulate the Amazon workforce. In a RL framework, the goal of the agent is 
identical to the goal of a human talent planner i.e., to identify strategies to reduce talent gaps and 
minimize costs, and possibly to reach other user-specific goals. The key difference is that instead of 
customers having to explore scenarios and identify optimal talent strategies on their own, the agent can 
explore, in the service of these same customers, a much larger number (up to millions) of scenarios to 
identify optimal talent strategies. The agent then recommends which levers to pull and when to pull 
them, to minimize talent gaps and costs. Using the popular method of RL from Human Feedback, the 
exact nature of the agent’s reward function could even be extended with arbitrary customer preferences, 
all the RL agent needs is some customer feedback on its behavior. The pioneering work in [10] showed 
RLHF can be scaled to practical and complex real-world applications beyond just language models, 
which we see as a formidable and untapped potential for the talent planning problem. The amount of 
feedback required to fine tune the agent’s behavior may take time to collect. As a first step, the current 
paper aligns the agent using deterministic reward components corresponding to known fundamental 
needs in workforce planning: minimize talent gaps and minimize costs.   
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Appendix 1: Detailed Reward Information 

We set the relative cost of the talent gap based on customer anecdote. Business partners report that 
they incur more cost when they are understaffed than overstaffed. This is because talent deficits make 
it difficult to produce planned deliverables and reduce future trust. Talent surpluses still incur cost by 
reducing the ROI realized from compensation expenditure. We differentially account for the cost of 
surplus and deficits by defining 𝒄𝒅 as a function of the direction of the gap.  

𝒇(𝒙) = 	 0 . 𝟓 × 𝒙𝒕𝒊 ×𝒎𝒊, 𝒊𝒇	𝒙 ≤ 𝟎
	. 𝟔 × 𝒙𝒕𝒊 ×𝒎𝒊, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 

 Where 𝒎𝒊 is the employee segment’s total compensation. For example, if a segment were to have 
$100,000 total compensation and were to have a 10-employee talent surplus, the agent would incur a 
$500,000 penalty. If the segment were to have a 10-employee deficit the agent would incur a 
$600,000 penalty. For the sake of this paper, we assume that the cost associated with a talent plan is a 
linear function of the actions and states taken in the recommended talent plan.  

𝒗𝒊(𝑨𝒕, 𝑶𝒕) = 	𝑪𝑨!
𝑻??????⃗ 	𝑨𝒕&?????⃗ 	+	𝑪𝑶!

𝑻??????⃗ 	𝑶𝒕&?????⃗ 	 

Where 𝑪𝑨????⃗  is a vector of weights that describe the relative cost of each action and 𝑪𝑶?????⃗  describes the 
relative cost of non-actionable talent movements (i.e., regretted attrition) that occur as state 
transitions. 

𝑪𝑨!??????⃗ = 	 [𝑪𝑷, 𝑪𝑼𝑹𝑨]; 		𝑨&????⃗ = 	 [𝑷, 𝑼𝑹𝑨]	
	𝑪𝑶!??????⃗ = 	 [𝑪𝑯, 𝑪𝑻𝑰, 𝑪𝑹𝑨, 𝑪𝑻𝑶]; 		𝑶&????⃗ = 	 [𝑯, 𝑻𝑰, 𝑹𝑨, 𝑻𝑶] 

The cost of talent strategies explored by the agent are defined by the relative cost of the talent 
movements. Relative costs were derived based on the financial and time expenditures necessary to 
complete an action and are reported in Table 2. For example, transfer in’s require a relatively smaller 
pre-employment screening process and tend to require a lower training period when compared to 
external hires.  

Table 1.1. Costs of actions and resulting talent movements per HC as percentage of average total compensation. 
Numbers are estimated and a more precise value will be aligned with business input 

Promo (CP) URA (CURA) Hires (CH ) Transf-in (CTI ) RA (CRA) Transf-out (CTO ) 
15%* m 20%* m 15%* m 8%* m 10%* m 5%* m 
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Appendix 2: Transfer Governing Equations 

In addition to the aforementioned principles, we constrained the maximum number of transfers out 
per month from a segment as 20% of the segment’s total headcount. Our approach to estimating 
transfers at the transaction level uses transfers-in conditional probabilities derived from historical 
transfers data. The conditional probability P(A|B) represents the likelihood that an employee 
transferred to team B originated from team A. We use this conditional probability as the basis for 
attributing total transfers into all other teams. Since we have a constraint on total transfers out from a 
team, the allocation may only be feasible for some segments. In such cases, we (1) identify teams that 
violated the constraint, (2) set their transfers out to the maximum transfers out, (3) exclude these 
teams and update transfers-in for remaining teams that did not violate the constraint, and finally, 
renormalize the conditional probability after excluding teams that violated the constraint. This process 
is repeated until no more teams violate the maximum transfer out constraints. Algorithm 1 illustrates 
the pseudocode for the constrained transfer allocation. 
 Algorithm 1: Pseudo code for iterative method to transfer allocation under constraint 
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Appendix 3: Agent Training 

The trajectory transformer was trained to predict next state, action, and reward transitions. 
Hyperparameters were selected by conducting a Bayesian search of the parameter space implemented using 
Amazon SageMaker HPO. Parameters tuned include layers, heads, embeddings, and context. A manual 
search of batch sizes, learning rates, and numbers of bins for the discretization. We found that a batch size 
of 512, Adam optimizer with a learning rate of 1e-3, and 200 bins for the discretization were the most 
effective parameters.  
 
In this paper, we use the Mean Absolute Percentage Error (MAPE) as a metric for evaluating the accuracy 
of our forecasting model. MAPE is a reliable indicator by quantifying the average absolute percentage 
deviation between predicted and actual values. Using the proposed trajectory transformer, governed by 
specific equations, the overall MAPE for all the state dimension for all the segments is 118.98%, overall 
MAPE for all actions dimension for all the segments is 256.69%, and for reward is 72.51%.  
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Appendix 4: Breakdown of Rewards 

Table 4.1. Comparison of Behavioral Cloning and the Trajectory Transformer algorithms’ cumulative discounted 
rewards across employee segments using model-based estimation. 

 Talent Gap Cost Talent Plan Cost 

Employee Segment Behavior 
Cloning (´108) 

Trajectory 
Transformer (´108) 

Behavior Cloning 
(´108) 

Trajectory 
Transformer (´108) 

Tech Indicator 
   Non-Tech $6.95 $6.37 $0.45 $0.50 
   SDE $2.37 $2.11 $0.070 $0.074 
   Tech (Non-SDE)  $2.24 $2.08 $0.035 $0.039 
Leaders 
   A $8.08  $7.41 $0.45 $0.50 
   B $2.78 $2.53 $0.083 $0.088 
   C $0.70  $0.62 $0.023 $0.024 
Job Level 
   L3 $1.49  $1.39 $0.16 $0.17 
   L4 $2.04 $1.84 $0.16 $0.17 
   L5 $3.56 $3.18 $0.13 $0.14 
   L6 $4.49  $4.15 $0.11 $0.13 

 


